Active microwave (radar) algorithm

$7^{\text {th }}$ IPWG Training Course

Nov. 17 ${ }^{\text {th }}, 2014$
Shinta SETO (Nagasaki University)

GPM Project

Core satellite

Dual-frequency
Precipitation Radar (DPR)
GPM Microwave Imager (GMI)

Constellation Satellites
Microwave Imagers and Sounders

GSMaP

DPR (Dual-frequency Precipitation Radar) 3

KuPR(13.6GHz) similar to TRMM/PR(13.8GHz) KaPR(35.5GHz) higher frequency for solid particles

Simultaneous measurement of KuPR and KaPR should give better precipitation estimates

Contents

- Introduction
- Quick review of drop size distribution
drop size, $N(D), N_{\mathrm{T}}, R, W, D_{\mathrm{m}}, D_{0}, N_{0}, N_{\mathrm{W}}$
exponential distribution, modified gamma distribution
- Variables related to radar measurement
Z, Z_{e}, Rayleigh approximation, Mie theory
$Z-R$ relation, DFR method
- Basic idea of PR and DPR algorithms
attenuation correction, $k, Z_{\mathrm{f}}, k-Z_{\mathrm{e}}$ relation

Quick Review of Drop Size Distribution

Section 1

Rain drops

Let us assume rain drops are sphere. (Acutally, they are not perfectly sphere, but oblated.) Drop size is the diameter of rain drop and is denoted by D [mm]. In most cases, D is between 0.1 mm to 7 mm .

DSD (Drop Size Distribution)

N is the number of rain drops in an unit volume.
N is a function of D, and the definition of N is given below.

The number of rain drops with D of between $N(D)\left[1 / \mathrm{m}^{3} / \mathrm{mm}\right]$ D_{1} and $D_{1}+\Delta D$ in the volume of $1 \mathrm{~m}^{3}$

$$
\int_{D_{1}}^{D_{1}+\Delta D} N(D) d D \approx N\left(D_{1}\right) \times \Delta D
$$

The number of all rain drops in the volume of $1 \mathrm{~m}^{3}$

$$
N_{T} \equiv \int_{D_{\min }}^{D_{\max }} N(D) d D
$$

DSD and rain rate

The total weight of rain drops $[\mathrm{kg}]$ in the volume of $1 \mathrm{~m}^{3}$

with the size of D

Rain rate $[\mathrm{mm} / \mathrm{h}]$
$R=3.6 \times 10^{-3} \times \int_{D_{\text {mif }}}^{D_{\text {m }}} \frac{4}{3} \pi\left(\frac{D}{2}\right) V(D) N(D) d D$
$v(D)=$ falling velocity $[\mathrm{m} / \mathrm{s}]$

The number of rain drops with the size of D and falling to the surface with area of $1 \mathrm{~m}^{2}$ within 1 second.

Representative value of D

D_{m} (mass weighted drop diameter)

$$
D_{m}=\frac{\int_{D_{\min }}^{D_{\text {max }}} \frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} D \rho_{w} N(D) d D}{\int_{D_{\text {min }}}^{D_{\max }} \frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} \rho_{w} N(D) d D}=\frac{\int_{D_{\min }}^{D_{\text {max }}} D^{4} N(D) d D}{\int_{D_{\text {min }}}^{D_{\max }} D^{3} N(D) d D}
$$

D_{0} (median volume diameter)

$$
\begin{aligned}
\int_{D_{\text {min }}}^{D_{0}} \frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} \rho_{w} N(D) d D & =\frac{1}{2} \int_{D_{\min }}^{D_{\max }} \frac{4}{3} \pi\left(\frac{D}{2}\right)^{3} \rho_{w} N(D) d D \\
\int_{D_{\min }}^{D_{0}} D^{3} N(D) d D & =\frac{1}{2} \int_{D_{\min }}^{D_{\text {max }}} D^{3} N(D) d D
\end{aligned}
$$

DSD model (1)

Exponential Distribution
$N(D)=N_{0} \exp (-\Lambda D)$
N_{0} and Λ are DSD parameters
$N_{T}=\int_{0}^{\infty} N_{0} \exp (-\Lambda D) d D=\frac{N_{0}}{\Lambda}$

$W=\frac{\pi \rho_{w}}{6} \int_{0}^{\infty} N_{0} D^{3} \exp (-\Lambda D) d D=\frac{N_{0} \pi \rho_{w}}{\Lambda^{4}}$
$D_{m}=\frac{\int_{0}^{\infty} D^{4} N_{0} \exp (-\Lambda D) d D}{\int_{0}^{\infty} D^{3} N_{0} \exp (-\Lambda D) d D}=\left(\frac{4!}{\Lambda^{5}}\right) /\left(\frac{3!}{\Lambda^{4}}\right)=\frac{4}{\Lambda}$

$$
\begin{gathered}
\int_{0}^{\infty} D^{x} \exp (-\Lambda D) d D=\frac{\Gamma(x+1)}{\Lambda^{x+1}} \\
\Gamma(x+1)=x \Gamma(x) \\
\text { If } x \text { is an integer, } \Gamma(x+1)=x!
\end{gathered}
$$

DSD model (2)

Modified Gamma Distribution

$$
\begin{aligned}
& N(D)=N_{0} D^{\mu} \exp (-\Lambda D) \\
& N_{T}=\int_{0}^{\infty} N_{0} D^{\mu} \exp (-\Lambda D) d D=\frac{N_{0} \Gamma(\mu+1)}{\Lambda^{\mu+1}} \\
& W=\frac{\pi \rho_{w}}{6} \int_{0}^{\infty} N_{0} D^{3+\mu} \exp (-\Lambda D) d D=\frac{N_{0} \pi \rho_{w} \Gamma(4+\mu)}{6 \Lambda^{4+\mu}} \\
& D_{m}=\frac{\int_{0}^{\infty} D^{4+\mu} N_{0} \exp (-\Lambda D) d D}{\int_{0}^{\infty} D^{3+\mu} N_{0} \exp (-\Lambda D) d D}=\left(\frac{\Gamma(5+\mu)}{\Lambda^{5+\mu}}\right) /\left(\frac{\Gamma(4+\mu)}{\Lambda^{4+\mu}}\right)=\frac{4+\mu}{\Lambda}
\end{aligned}
$$

In DPR algorithm, modified gamma distribution are adopted.

Instead of N_{0} and Λ, N_{w} and D_{m} are used as DSD parameters.
N_{w} is called "normalized intercept parameter".
W becomes independent of μ.

$$
W=\frac{N_{w} \pi \rho_{w} D_{m}^{4}}{4^{4}}
$$

DSD plane (1)

$$
N(D)=N_{w} f(\mu) D^{\mu} \exp \left(-\frac{(4+\mu)}{D_{m}} D\right)
$$

- In the current version of DPR algorithm, μ is fixed to be 3 .
- DSD is represented by two parameters N_{w} and D_{m}.
- If N_{w} and D_{m} are determined, variables (such as $W, R, N_{\mathrm{T}}, D_{0}$) can be calculated.
- In the right figure, D_{m} and $\mathrm{dB} N_{\mathrm{w}}=10 \log _{10}\left(N_{\mathrm{w}}\right)$ are abscissa and ordinate, respectively. Contours are $\mathrm{dBR}=10 \log _{10}(R)$, where falling velocity is assumed as

$$
v(D)=4.854 \times D \times \exp (-0.195 D)
$$

DSD plane (2)

$$
N(D)=N_{w} f(\mu) D^{\mu} \exp \left(-\frac{(4+\mu)}{D_{m}} D\right)
$$

- Instead of $\mathrm{dB} N_{\mathrm{w}}, \mathrm{dBR}$ is ordinate.
- Contours are $\mathrm{dB} N_{\mathrm{w}}$.
- This plane effectively shows feasible DSDs.
- D_{m} is usually 0.5 to 2.0 mm .
- R is usually 0.1 to $100 \mathrm{~mm} / \mathrm{h}$.
($-10 \mathrm{dBmm} / \mathrm{h}$ to $20 \mathrm{dBmm} / \mathrm{h}$)

Variables related to Radar measurement

Section 2

Radar observation (1)

A radar transmits microwave.

Part of microwave radiation are backscattered by rain drops.

The radar receives returned microwave.

As long as Rayleigh
 approximation holds,

$$
P_{r}=P_{t} C \int_{D_{\min }}^{D_{\max }} D^{6} N(D) d D
$$

C is a constant
Z (6 ${ }^{\text {th }}$ moment of DSD) is called radar reflectivity factor

$$
Z \equiv \int_{D_{\min }}^{D_{\max }} D^{6} N(D) d D \quad Z=\frac{P_{r}}{C P_{t}}
$$

Z

(radar reflectivity factor)

$$
Z=\int_{D_{\min }}^{D_{\max }} D^{6} N(D) d D
$$

For modified gamma distribution,
$Z=N_{w} f(\mu) \int_{0}^{\infty} D^{6+\mu} \exp \left(-\frac{(4+\mu)}{D_{m}} D\right) d D$
$Z=N_{w} f(\mu) \frac{\Gamma(7+\mu)}{(4+\mu)^{7+\mu}} D_{m}{ }^{7+\mu}$

- In the right figure, $\mathrm{dBZ}=10 \log _{10}(\mathrm{Z})$ is shown by contours.
- Z is related not only to R but D_{m}.

Z-R method

$Z=a R^{b}$

$Z-R$ relation is assumed to follow a power law. For example, $a=200$ and $b=1.6$

- A fixed Z-R relation is valid only if $\left(D_{\mathrm{m}}, R\right)$ is on a line.
- For example, $Z=200 R^{1.6}$ is valid if $\left(D_{\mathrm{m}}, R\right)$ is on the dotted line in the right figure.

Radar observation (2)

If the ratio of drop size to wavelength is large, Rayleigh approximation cannot be used.

$$
P_{r} \neq P_{t} C Z
$$

In this case, Z needs to be replaced by Z_{e}.
Z_{e} is called effective radar reflectivity factor.

$$
P_{r}=P_{t} C Z_{e}
$$

Z_{e} is calculated by Mie scattering theory. Z_{e} is dependent on drop size, wavelength of microwave, and refractivity index.

$Z_{\mathrm{e}}(\mathrm{KuPR})$

- For the frequency of KuPR (13.6 GHz)
- $\mathrm{dBZ}=10 \log _{10}\left(Z_{\mathrm{e}}\right)$ is shown by blue contours.
- The difference between Z and Z_{e} of 13.6 GHz is clearly seen when D_{m} is larger than 1.5 mm .

Z_{e} (KaPR)

- For the frequency of KaPR (35.5 GHz)
- $\mathrm{dBZ}=10 \log _{10}\left(\mathrm{Z}_{\mathrm{e}}\right)$ is shown by red contours.
- The difference between Z and Z_{e} of 35.5 GHz is seen when D_{m} is larger than 0.7 mm .

DFR method

- If we have Z_{e} at the two frequencies (KuPR and KaPR), we can retrieve R.
- In practice, the ratio of $Z_{\mathrm{e}}(\mathrm{KaPR})$ to Z_{e} (KuPR) or the difference between $d B Z_{e}(\mathrm{KaPR})$ and $\mathrm{dBZ}_{\mathrm{e}}(\mathrm{KuPR})$ is calculated.
$\mathrm{DFR}=\mathrm{dB} Z_{\mathrm{e}}(\mathrm{KaPR})-\mathrm{dB} \mathrm{Z}_{\mathrm{e}}(\mathrm{KuPR})$
- DFR is dependent only on D_{m}.
- If D_{m} is determined by DFR, then R can be determined by D_{m} and Z_{e}.
- However, D_{m} is not uniquely determined if DFR is positive. In this case, larger D_{m} is usually selected.

Basic idea of
 PR and DPR algorithms

Section 3

Radar observation (3)

Ideally, Z_{e} can be given by radar measurement.
$P_{r}=P_{t} C Z_{e}$

Actually, measurement is affected by attenuation.

$$
P_{r}=P_{t} C Z_{e} A \quad(0<A<1)
$$

So, Z_{m} or measured reflectivity factor is given instead of Z_{e}.

$$
\begin{aligned}
P_{r}=P_{t} C Z_{m} \quad & Z_{m} \equiv Z_{e} A \\
& \mathrm{dBZ}_{m}=\mathrm{dBZ}_{e}-10 \log _{10} A^{-1}
\end{aligned}
$$

Attenuation correction

$\mathrm{dBZ} \mathrm{m}_{\mathrm{m}}=\mathrm{dBZ} \mathrm{e}_{e}-10 \log _{10} A^{-1}$
$\mathrm{dBZ} Z_{m}=\mathrm{dBZ} Z_{e}-\sum_{i=1}^{N-1} 2 k_{i} L-k_{N} L$
$k \quad$ specific attenuation at $i^{\text {th }}$ bin
$L \quad$ thickness of each bin
If attenuation of $1^{\text {st }}$ to $(N-1)^{\text {th }}$ bin is known, Z_{f} (defined as below) is calculated.
$\mathrm{dBZ}_{f} \equiv \mathrm{dBZ}_{m}+\sum_{i=1}^{N-1} 2 k_{i} L$
Z_{f} is written as follows.

$\mathrm{dBZ}_{f}=\mathrm{dBZ}_{e}-k_{N} L$

$Z_{\text {f }}$

$$
\mathrm{dBZ}{ }_{f}=\mathrm{dBZ}{ }_{e}-k_{N} L
$$

k_{N} is determined by DSD of the $N^{\text {th }}$ bin. In case of spherical homogeneous particle, k_{N} can be calculated by Mie scattering theory as well as Z_{e}. So, $\mathrm{dBZ}_{\mathrm{f}}$ is a function of D_{m} and R.
$Z_{\text {e }}$

Compare with Z_{f}

Basic idea of single-frequency algorithms (PR, KuPR, KaPR)

- Solve sequentially from upper bin to lower bin.
- At each bin, find the crossing point of the two lines.
- Z_{f} (PR or KuPR or KaPR)
- $k-Z_{\mathrm{e}}$ relation such as $k=\alpha \mathrm{Z}_{\mathrm{e}}{ }^{\beta}$
- Similar with Z-R method.
- No universal $k-Z_{\mathrm{e}}$ relations. To reduce error in R, optimum $k-Z_{\mathrm{e}}$ relation should be selected.
- α and β are dependent on rain type, particle phase and temperature.
- α can be adjusted by surface reference technique.

Basic idea of dual-frequency algorithm

- Solve sequentially from upper bin to lower bin.
- At each bin, find the crossing point of the two lines.
- $Z_{\mathrm{f}}(\mathrm{KuPR})$
- $Z_{\mathrm{f}}(\mathrm{KaPR})$
- Similar with DFR method.
- This method has two weakness.
- Always, two or more crossing points exist. \rightarrow Larger D_{m} (or smaller R) are selected.
- $Z_{\mathrm{f}}(\mathrm{KaPR})$ has low reliability because attenuation is relatively heavy at KaPR.
\rightarrow Underestimation of R.

Improvement of dual-frequency algorithm

- Solve sequentially from upper bin to lower bin.
- At each bin, find the point closer to the three lines.
- $Z_{\mathrm{f}}(\mathrm{KuPR})$
- $Z_{\mathrm{f}}(\mathrm{KaPR})$
- $k-Z_{\mathrm{e}}$ relation such as $k=\alpha \mathrm{Z}_{\mathrm{e}}{ }^{\beta}$

More topics about PR and DPR

Black topics are explained today

> Purple topics have been implemented in DPR algorithms
> Blue topics were implemented in PR algorithms
> Red topics have not been implemented.

- Retrieval of DSD and rain rates from Z_{m}
- Drop shape: sphere oblate
- DSD model: modified gamma distribution ($\mu=3$)
- Drop phase: liquid solid, mixed(melting)
- Attenuation correction for non-precipitating particles
- Bright band detection and rain type classification
- Clutter detection and extrapolation of estimates.
- Surface reference technique (SRT)
- Non uniform beam filling
- Multiple scattering

