The 7th GPM International Planning Workshop
Bellesale Kudan, Tokyo, Japan
Dec. 7 (Fri) 2007

The Global Satellite Mapping of Precipitation (GSMaP) Project

Takuji Kubota (JAXA/EORC),
Ken’ichi Okamoto (Osaka Pref. Univ.),
S. Shige, T. Ushio, T. Iguchi, N. Takahashi, K, Iwanami,
K. Aonashi, M. Kachi, R. Oki, and collaborators
We have started to release hourly global rainfall data (0.1x0.1deg. lat/lon) in near real time (about four hours after observations) and visualize the latest data quickly.

Global Rainfall Map in Near Real Time by JAXA/EORC
http://sharaku.eorc.jaxa.jp/GSMaP/
Examples of the global rainfall maps

Global rainfall maps (overlapped with IR images) in the Near-Realtime system

Animation from 10th to 16th November 2007

A cyclon “SIDR” hit the coast of Bangladesh from the Bay of Bengal.

A movie made using figures in http://sharaku.eorc.jaxa.jp/GSMaP/
The system was constructed using algorithms of the Global Satellite Mapping of Precipitation (GSMaP) project.

Outline of the GSMaP project
- A project sponsored by Japan Science and Technology Agency (JST)
- P. I. : Prof. K. Okamoto (Osaka Pref. Univ., Japan)
- Research activities from Nov. 2002 to Oct. 2007

The algorithms are mainly composed of
- Microwave radiometer (MWR) algorithm
- Blended MWR-IR algorithms
Data collection in first three hours, and calculation within an hour

Production of Global Rainfall Map (hourly)

Look-up Tables for MWR retrievals (once a day)

Look-up Tables for daily 5.0 deg. resolution

Atmospheric variables
- JMA Global analysis (GANAL)
- JMA MGDSST

Objective analysis SST

RTM Calculation

LUT for MWR

MWR IR

Rainfall retrieval from each MWR sensor

Blended MWR-IR algorithm

Global rainfall maps

Public Server

Microwave Radiometer data
- TMI, AMSR-E, SSM/I(F13,14,15)
- GEO IR data
 Merged data by JWA from MTSAT, METEOSAT, GOES

Microwave radiometer algorithm
(GSMaP_MWR algorithm)

GEO IR data

GSMaP_MVR algorithm

GEO IR data

Microwave Radiometer data
- TMI, AMSR-E, SSM/I(F13,14,15)
- GEO IR data
 Merged data by JWA from MTSAT, METEOSAT, GOES

Microwave radiometer algorithm
(GSMaP_MWR algorithm)

GEO IR data

GSMaP_MVR algorithm

GEO IR data

Microwave Radiometer data
- TMI, AMSR-E, SSM/I(F13,14,15)
- GEO IR data
 Merged data by JWA from MTSAT, METEOSAT, GOES

Microwave radiometer algorithm
(GSMaP_MWR algorithm)

GEO IR data

GSMaP_MVR algorithm

GEO IR data
Observed TBs

Rainfall rate

Precipitation structures (Precipitation Profile, Melting layer, DSD)

Atmospheric variables (temperatures, ...)

Look-up Table

Retrieval Algorithm

RTM calculation

Precipitation physical model

• Precipitation structures
 (Precipitation Profile, Melting layer, DSD)
• Atmospheric variables
 (temperatures, ...)

• Physical algorithm based on the Radiative Transfer Model (RTM)
• Necessary for assuming precipitation physical model for RTM calculations and developing methods such as Rain/No-rain classification

(Aonashi and Liu 2000, Kubota et al. 2007)
Developments of GSMaP_MWR algorithm

Atmospheric information:

- Objective analysis (JMA GANAL)
- Rain/No-rain Classification (RNC) Method
- Tb Database method by Dr. Seto

Improvement of scattering algorithm

Utilization of PCTs at 85GHz and 37GHz (by Dr. Aonashi)

Melting layer model

Common model of PR2A25 algorithm (Nishitsuji model) by Prof. Awaka and Dr. Takahashi

Rain drop size distribution (DSD) model

Gamma DSD model estimated from epsilon values of TRMM PR (by Prof. Kozu)

Rain/No-rain Classification (RNC) Method

Tb Database method by Dr. Seto

Precipitation profile model

Statistical Profiles derived from TRMM PR (by Prof. Takayabu, with Dr. Hirose)

Atmospheric information:

Objective analysis (JMA GANAL)
Flowchart of Blended MWR-IR algorithm (GSMaP_MVK algorithm)

GEO IR data
- Present IR
 - 1-hour-before IR
 - Present IR
 - Cloud motion vectors
 - Zonal
 - Meridional

Past GSMaP data
- 1-hour-before GSMaP
 - GSMaP interpolated by the motion vectors
 - Kalman filter

Present MWR data
- MWR data observed during present 1 hour
 - (MWR overpasses)
 - (Outsides MWR overpasses)
 - Present GSMaP
Blue violet areas show MWR overpasses.

GSMaP_MVK Rainfall Rate: 00Z25JUL2005
Comparison of TMI retrievals (GSMaP_TMI) with COBRA data for four selected overpasses during June 2004 (0.25 x 0.25 deg.)

Rain rate (0.25x0.25 deg.) : GSMaP

Correlation : 0.82
RMSE(mm/hr) : 1.37

NICT Okinawa Bistatic Polarimetric Radar (COBRA)
C-band(5340 MHz)
10 minute cycle

A field campaign of observing precipitation in Okinawa, Japan during rainy season of 2004 (okn-baiu04)
The GSMaP joins the IPWG/PEHRPP activities and validates various satellite estimates around Japan using JMA Radar-AMeDAS analysis. Comparisons in daily averaged rainfall estimates with 0.25 x 0.25 deg. resolution are shown in http://www.radar.aero.osakafu-u.ac.jp/~gsmap/IPWG/dailyval.html.
Comparison between products of GSMaP and others

Daily series of correlation coefficients between the satellite estimates and the RA. The data are daily averaged with 0.25 deg. lat/lon.
Summary

- Web site in near-real time using GSMaP algorithms

- Microwave radiometer algorithm (GSMaP_MWR algorithm)
 - Algorithm developments using various attributes of TRMM PR observations
 - ex. Precipitation profile, DSD model, Scattering algorithm, Rain/no-rain Classification method
 - Developments based on the common physical model between MWR and PR algorithms
 - Melting layer model

- Blended MWR-IR algorithm (GSMaP_MVK algorithm)
 - Cloud motion vector and kalman filter

- Validation