AMSR Data Input Toolkit (ADIT)
User’s Guide
Version 3.00

H Edition: Nov. 16, 2012

Japan Aerospace Exploration Agency (JAXA)
SMITSUBISHI SPACE SOFTWARE CO.. LTD.

Change Record Page

Document Title: AMSR Data Input Toolkit (ADIT) User’s Guide
Document Date: February 5, 2003

Issue Date Page Affected Description
Original 26/6/2002 All Baseline
A 5/2/2003 pl-1 LINUX was added as tested environment
in Table 1.2-1.
p2-3 Makefile for LINUX was added. This
version supports C program on LINUX OS .
n Function for correction of leap second
between TAI and UTC was added. This
version corrects its leap second when
SCAN_TIME is converted to UNIX System
Time(UTC). Consequently, a leap second
information file was added in the directory
after expansion of ADIT.
p2-4 Environment setting procedure on leap
second correction was added.
p3-3 Example of C program for using LINUX OS
was added.
p4-18 Data type of SPC_temp_cale and
SPS_temp_calec were changed 4byte real
into 8byte real.
p4-24 Quality flag was revised completely.
p4-29 CoRegistrationParameterAl and A2 was
added in Table 4.4.1-1.
B 28/5/2003 P5-1~4 Sample programs were added.
C 24/2/2004 p4-24,25 Quality Data in Level2 product is revised.
p4-30 Added following data in Table 4.4.1-1.
CalibrationMethod
HTSCorrectionParameterVersion
SpillOverParameterVersion
MoonLightEffectParameterVersion
D 1/5/2005 p2-4 Installation method of ADIT supported
Version 1.07
p3-1,2 The description about a 89GHz low
p4-1,3,4,6,7 frequency equivalent data calculation
function was added.
P4-15 Modify following data in Table 4.3.4-1
pos_orbit
P5-4 Sample programs were added.
Sample data were modified.
E 5/3/2008 P4-33,34 Amend because of misdiscription.
F 2/3/2010 P1-1 HP and DEC were deleted in Table 1.2-1
P2-3~4 Installation method of ADIT supported
Version 2.02.
P3-4, P3-9 HP and DEC were deleted.

P3-13~17

The Linux version is added.

26/9/2011 P3-1~P3-4, Added functions to read a number of scans.
P3-8, P3-14,
P4-1~P4-10,
P5-3~P5-4
16/11/2012 pl-1 Update compiler version in Table 1.2-1.
P2-3~4 Installation method of ADIT supported
Version 3.00.

1

HDF library and ADIT ... e eevare e 1-1
1.1 Whatis HDEF? ..ottt e 1-1
1.2 What 18 ADIT? ..ottt ettt e e e tae e et e e s aeeeeaaeeens 1-1

Installation of HDF library and ADITcoooiiiiiiie et 2-1
2.1 Installation of HDF LIDrarycccccooeiiiiiiiiiiiiie ettt eeree e 2-1

2.1.1 Installing HDF library from compiled binarycccccceeviiiirnncreeennnee. 2-1

2.1.2 Installation of HDF library from source code.........c..ccoevereiiiiiinnnrenennnnee. 2-2
2.2 Installation of ADIT ...ttt e e 2-3
2.3 Setting eNVIrONIMENTcceiiiiiiiieiiiieeeriiee et e e ettt e e e et e e e eareeeesebaeeeens 2-4

Programming with ADIT ...t 3-1
3.1 Program deSCriPtiOncccccoeiiiiiiiiiiiiieeeiieeeeeee e e ee e et e e e eree e e eree e e e 3-1
3.2 C Programming...........ccceeeieeiiiiiiiiieeeeeeeeeictrrreeeeeeeessesetrsreeeeessssssssssreeeesseesensssrees 3-3

3.2.1 Example of C Programi........c.ccccooevviiiiiiieeeiiiiiiiieee e e e eeeiirrreee e e e e e eeiiivaeeeee s 3-3

3.2.2 HOW 10 COMPILE.....cccoiiiiiiiiiiiii et 3-4

3.2.3 Sample program code for Ccccveiiiiiiiiciiiiiiie e 3-5
3.3 Fortran programming (SunOS version, SGI version)cccccoevveeeevuernennenn 3-8

3.3.1 Example of Fortran program.............cccccccoeveurrireieeeeiiiiciinneeeeeeeeerivrneeeenns 3-8

3.3.2 HoW t0 compPIle.......ccoouviiiiiiiiieie it 3-10

3.3.3 Sample program code for FOrtran............ccccoeevvvviiiiiiiiiiiiiieieeeeeeeeeee, 3-11
3.4 Fortran programming(Linux Version)............cccocevvevviruerreereeeeeeeieeseseeeneas 3-14

3.4.1 Example of Fortran program.............ccccccooeeemiiiveeeeeeeeeeeeeieeeeeeeeeeeeenneees 3-14

3.4.2 HOW t0 COMPIIE.. .. 3-16

3.4.3 Sample program code for Fortran..............cccceeevveiiieenciiieeeciiee e 3-17

APPENDIX ...ttt ettt e sttt e et e et e et e ettt e e aaaeetaeennnaen 4-1
4.1 Routines defined in ADITcoooiiiiiiiiiiieee e 4-1
4.2 User routine interface in ADITccccoiiiiiiiiiiiie e 4-3
4.3 Structure definition in ADITccooiiiiiiiiiie e 4-11

4.3.1 L1B, L2 common structure..............cccccoeviiiiiiiiiiiiiieeeeeeee 4-12

4.3.2 AMSRLI1B_SWATH (for L1B).......ccccetoeunimiiniiieiiicinieieieieeneieneeeseeeeeeneee. 4-12

4.3.3 SUN_EARTH (for L1B)coooimiiiiiiiieieirinicieieisiceee e 4-15

434 STATUS_LIB (for L1B)ccoooiiiiiiieiiieeeeeeeeeeeeeeeee e 4-18

4.3.5 CAL (for L1B).....coiiiiiiiieiiicirieieicieitiete ettt ettt 4-20

4.3.6 NAVI (0T L1B) ...coooiuiimiieiiiciiieieicieitieietieieeseieteietstie et 4-26

43,7 AMSRL2_SWATH (for L2)........ccoovieiiiieeeieeeeeeeeeeeeee e, 4-27

4.3.8 STATUS_L2 (for L2) ...ocooeoeieeiiiiieieeieieeeese et 4-28

4.3.9 L3 Science data
4.4 MetaAdaAta ..ooeeeiiiiiiiiieeee ettt e et 4-32

441 LIBMetadatacccccoeviuiiiiiiiiiiiiiiiec e 4-32
4.42 L2Metadata.......ccocoveiiiiiiiiiiiiiie e 4-35
4.4.3 L3 Metadata.......ccccooiiiiiiiiiiiiiiii e 4-36
5 Sample Program LiSt.........cccooiiiiiiiiiiiiiiiiiiieeece et 5-1

1 HDF library and ADIT

1.1 What is HDF?

The AMSR/AMSR-E product is constructed as a Hierarchical Data Format (HDF) file,
which was developed by the National Center for Supercomputing Applications (NCSA).
If you want to read the data from an HDF file with your C program or Fortran program,
you should install the HDF library on your computer. The HDF library is distributed
from NCSA with its source codes and/or binary code free of charge. The details for

obtaining and installing the HDF library are written in Chapter 2.

1.2 What is ADIT?

There are two ways to read AMSR/AMSR-E data constructed as an HDF file. One is to
use only the HDF library, and the other is to use the AMSR Data Input Toolkit (ADIT)
which uses the HDF library as internal routine, for reading AMSR/AMSR-E data in your
own C program or Fortran program.

ADIT provides functions for reading and storing AMSR/AMSR-E data into local
structured variables of one-scan size.

Some data will be converted with a scale factor and saved into the HDF file. ADIT will
recognize the scale factor for its conversion and calculate its original value. If you use
ADIT to handle AMSR/AMSR-E data in your program codes, you can easily get the
correct data. ADIT functionalitys were tested on some of the most popular machines and

operating systems, as shown in Table 1.2-1.

Table 1.2-1 ADIT Tested Environments

Platform | OS version C compiler FORTRAN compiler HDF
version
Sun Solaris 10 Oracle Solaris Studio | Oracle Solaris Studio | 4.2r5
12.2 cc 12.2 £77
LINUX 2.6.18-194.el5 | gce-4.1.2 GNU:gfortran 4.0.1 4.2r5
PGI:pgf90 6.1-9
Intel:ifort 11.1

1-1

2 Installation of HDF library and ADIT

In this Chapter, we describe how to install the HDF library. AMSR/AMSR-E products
are produced as HDF files with HDF version 4.2r5 at the Earth Observation Research
Center (EORC), JAXA. You should apply the same version of HDF library, but not
necessarily for the same revision number. We will show how to install HDF version 4.2r5

in the following section.

2.1 Installation of HDF library

There are two ways to install the HDF library on your machine. One is to install the
binary code, the other is to obtain the source code and compiling it for installation. You
can obtain both from the HDF library ftp site at NCSA. You may select the suitable type

for your machine’s OS or source code type.

2.1.1 Installing HDF library from compiled binary

First, please obtain HDF library the binary code for your computer by ftp from the
hdfgroup site. You don not need a super user account on your Unix machine to install the
HDF library.

If you use a Web browser such as Netscape or Internet Explorer, please set the

following URL in its address field to download the files.

ftp:// ftp.hdfgroup.org/HDF/HDF_Current/bin

Please select the suitable HDF library file for your OS and start to download. After
downloading HDF library, please type the following commands to uncompress the

downloaded file in your selected directory where you want to install the HDF library.

% gunzip 4.2r5-1rix64-n32.tar.gz
% tar xvf 4.2r5-1rix64-n32.tar

If “gunzip” and “tar” are completed without error, a new directory 4.2r5-irix64-n32/ will

be created. Its structure and contents are shown in the table below.

4.2r5-1rix64-n32/ COPYING Copyright
README README file to use HDF library
bin/ directory of utility of HDF
include/ directory of included files of HDF library
lib/ HDF library directory
man/ directory of manual of utility
release_notes/ directory of explanations of HDF library

If the uncompress and installation were successfully completed, you can use the HDF

library.

2-1

2.1.2 Installation of HDF library from source code

You should prepare an ANSI C compiler for compiling the HDF library. If you don't
have an ANSI C compiler, you may use gcc compiler which is freeware from GNU.

You can get HDF library source codes from the following URL via ftp. If you use a Web
browser such as Netscape or Internet Explorer, please set the following URL in its
address field to download the files.

ftp:// ftp.hdfgroup.org/HDF/HDF_Current/bin

After downloading the HDF library source codes, please type the following commands
to uncompress the downloaded file in your selected directory where you want to install
the HDF library.

% gunzip HDF4.2r5.tar.gz
% tar xvf HDF4.2r5.tar

If “gunzip” and “tar” are completed without error, a new directory 4.2r5-irix64-n32/ will

be created. Its structure and contents are shown in the table below.

HDF4.2r5/ COPYING Copyright
INSTALL Installation manual
MAKEVMS.COM*
Makefile.in
README description of directory contents, and so on
Win32.nofortran.zip*
Win32.zip*
config/ directory of configuration
configure* configure file
configure.in
hdf/ source code directory of HDF library
install-sh*
lib/
man/ directory of HDF manuals
mfhdf/ directory of netCDF
mkinstalldirs
move-if-change®
release_notes/ directory of release notes

Before you compile the HDF library, you should confirm the configuration of your
operational environment such as the installation directory. If you specify “./configure,”
the default installation directory is created as “/usr/local,” and other directories such as
“lusr/local/lib” for the library file, “/usr/local/bin” for the utility file, “/usr/local/man” for
the manual file and “/usr/local/include” for the include file are also created. As these files
are overwritten in the specific directory, please make sure your specified name directory
does not already exist.

In the following sample, we assume that you install the HDF library in your own
directory “/home/amsr/work/HDF4.2r5.” First, please type the following command to

configure the HDF library environment.

2-2

% ./configure -v —prefix='home/amsr/work/HDF4.2r5

In this step, your HDF library directory is set to “/home/amsr/work/HDF4.2r5” by
using “--prefix” option. The “./configure” command creates the most suitable “makefile”
for creating the HDF library. The next step is to compile the HDF library.

Please type “make” in the command line to compile the HDF library.

% make

To confirm that the compiling process is successfully completed, please type the

following command.

% make test

The compiling result will be output to the standard output device. It will be convenient

to output this result to your specific file such as “make.test.out.”

% make test >& smake.test.out

Finally, you can install the HDF library by typing the following command.

% make install

2.2 Installation of ADIT
You can download ADIT from the EORC Web site.

http://sharaku.eorc.jaxa.jp/AMSR/tool/index.html

After downloading the file, please type the following commands to uncompress ADIT in

your current directory.

% gunzip ADITv3.00.tar.gz
% tar xvf ADITv3.00.tar

You can then confirm the structure of the “ADITv3.00/” directory as follows.

ADITv3.00/ | Makefile.SGI Makefile for IRIX OS
Makefile.SunOS Makefile for SUN OS
Makefile.PGI
Makefile. LINUX | Makefile for LINUX OS
allmake shell script for making Makefile according to your
environment
install installer of ADIT
include/ directory of included ADIT files
lib/ default installation directory of ADIT library
src/ directory of ADIT source code
ete/ directory of Leap second (TAI-UTC) information file
sample/ directory of sample programs that use ADIT

Please type the following commands to install ADIT.

% cd ADITv3.00/
% ./install

When you invoke the installer with "./install," you should key in the specific directory

name at step A to D below.

2-3

% ./install
#H Start installing AMSR Data Input Toolkit (Ver.3.00) ##
Input the directory of ADIT. ((home/amsr/work/ADITv3.00) ==>

Input the directory of included files of the HDF library. ==>/home/amsr/work/HDF4.1r2/include
Input the directory of library files of the HDF library. ==>/home/amsr/work/HDF4.1r2/lib

Input the directory storing a library of ADIT. (/home/amsr/work/ADITv3.00./1ib) ==>

S aw»

(compiling message)

Finished installing ADIT.

Created a library of ADIT. ((home/amsr/work/ADITv3.00/1ib/libADIT.a)
*** Press Enter ===>
%

You have to key in the directory name at A to D steps, according to the following

directions.

A configuration of the main directory for ADIT installation
This is the first step of configuration, which decides the main directory of ADIT
installation directory. The default is the current directory where you Type the
commands “/install.” Press the return with no input directory name if you like it.

B Configuration of included file path of HDF
Type the directory name of the included file of HDF.

C Configuration of library file path of HDF
Type the directory name of the library file of HDF.

D Configuration of library file path of ADIT
This is the final step of configuration, which decides the library directory of ADIT.
Type the directory where you want to install the library of ADIT. If you press return
without inputting any directory name, the installer sets the default directory. The
default directory is “current_dir/ADITv3.00/1ib.”

When all configuration steps are processed, the library file will be created
automatically in the configured directory. The library file name is “libADIT.a,” which you
can confirm with the following command. When you confirm the structure of the

directory and its ADIT files, your installation of ADIT is completed successfully.

| % 1Is -1 < configured directory decided at D step>

2.3 Setting environment
This library corrects leap second between TAI and UTC by a leap second information

file. It is adopted for SCAN_TIME referring to 4.3.1. It is necessary to set leap second

information file name to LEAP DATA ,which is environment variable. Its file name

should be written by absolute path. An example is shown bellow.

In case of using csh or tesh, the environment variable is set as follows. For example,

csh user should add the bellow sentence in a .cshrc file.

| setenv LEAP_DATA <directory set at A step/etc/tai-utc.dat>

2-4

Bash user should add the bellow sentence in a .bashre file. Bsh and ksh user are the

same.

| export LEAP_DATA=<directory set at A step/etc/tai-utc.dat>

In addition, the leap second information file usually will be updated in a couple of
years. So user needs to keep the latest file by yourself getting it from internet, which
URL is shown bellow.

ftp://maia.usno.navy.mil/ser7/tai-utc.dat

If the file is updated, please replace the old file, <directory set at Aletc/tai-utc.dat>,

with new one.

2-5

3 Programming with ADIT

3.1 Program description
When you use ADIT for AMSR/AMSR-E data handling, please refer to the following
descriptions for your own program code.(However, the function that calculates the data

of 89GHz low frequency is excluded.)

A Description of header file
You must write the description of the header file for ADIT. The structures of
AMSR/AMSR-E level 1B, level 2 and level3 products and some related parameters are

specified in this included file.

B Declaration of structures
You may declare the structure of the name you defined in header file of ADIT. After

the declaration, you can call your structures in your program code.

C Opening the HDF file
You can open your related HDF file.

D Reading of Metadata

You can input your favorite Metadata in the HDF file to the variable you declared.

E Reading of scan data
AMSR/AMSR-E data stored in the HDF file shall be handled with each or many scan
for observation. The observed data stored in the HDF file was input by routines of ADIT

to the structure you declared as observed data for scan.

F Closing the HDF file
You can close HDF file, and finish handling the data.

3-1

The function that calculates the data of 89GHz makes the observational data for one

scene. Therefore, this program is different the procedure from other programs.

A Opening the HDF file
You can open your related HDF file.

B Calculation of 89GHz low frequency equivalent data

Read HDF file and parameter file are input, and 89GHz low frequency equivalent

data is calculated.

C Closing the HDF file
You can close HDF file, and finish handling the data.

3-2

3.2 C Programming

We will now describe the C sample program.

3.2.1 Example of C program

A Description of header file

| #include <AMSR.h>

| include file of ADIT

B Declaration of structures

AMSRL1B_SWATH *swathlb;

Left: Structure defined in AMSR.h
Right: Structure defined by user

C Opening of HDF file

file_id=openV(HDF file name);

file_id: file_id to access V data of HDF
“HDF file name”: HDF file name that you will read

sd_id=openSD(HDF file name);

sd_id: sd_id is sd_id to access SD data of HDF
“HDF file name”: HDF file name that you will read

D Reading of Meta data

status = getATTRIBUTE_NAME_AMSR(sd_id,"LocalGranuleID" granuleID);

Description of reading "LocalGranuleID" from Meta
data name

“sd_id”: sd_id that you get at C step.
“LocalGranuleID”: Meta data name in HDF file
“granulelD”: Variable defined by user

E Reading of scan data

Reading data for each scan

for(i=0si<scanno;i++){

}

status = get AMSRL1B_SWATH(sd_id,file_id,swath1b,i);

“sd_1d”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user

({35500

1”: variable for “for loop”

3-3

Reading data for number of scans

status = get AMSRL1B_SWATH_line(sd_id,file_id,swath1b, start_scan,end_scan);

“sd_1d”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user
“start_scan”: start scan No.(Beginning0)
“end_scan”: end scan No. (Beginning0)

F Closing of HDF file

status = closeV(file_id); Description of closing V data
“file_id”: file_id that you get at C step

status = closeSD(sd_id); Description of closing SD data
“sd_1d”: sd_id that you get at C step.

3.2.2 How to compile

In this section, we will explain how to compile the C program for some platforms.

A SUN (Solaris 8)
Note: Use compiling option “-DSUN -Xc -Insl -Im”

cc -DSUN -Xc -Insl -0 samplel samplel.c \
-I/home/amsr/work/ADITv3.00/include -I/home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-JADIT -lmfhdf -1df [-]jpeg] -1z -Im

B SGI (IRIX6.5)
Note: Use compiling option “-DSGI -xansi -O -s -Im”

cc -DSGI -xansi -O -s -0 samplel samplel.c \
-I’/home/amsr/work/ADITv3.00/include -I'home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-JADIT -Imfhdf -1df [-]jpeg] -1z -1m

C LINUX (2.2.13-33)
Note:Use compiling option “-DLINUX -ansi -lm”

gee -DLINUX -ansi -o samplel samplel.c \
-I/home/amsr/work/ADITv3.00/include -I/home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-1IADIT -lmfhdf -1df -ljpeg -1z -Im

3-4

3.2.3 Sample program code for C

In this section, we note samplel.c.

#include <stdio.h>

Description of header file for

#include <AMSR.h> <

int main(int arge,char *argv(l)
{

nt32 1,scanno;

int32 file_id,sd_id;

char scannoC[10],granuleID[40];
char beginD[20],beginT[20];
char endD[20],endT[20];

AMSRL1B_SWATH *swath1b;
SCAN_TIME *scantime;
SUN_EARTH *sunearth;
STATUS_L1B *status1b;

CAL *cal;

NAVI *navi;

/* Argument check */ /
if(arge!=2) {

using ADIT

Declaration of structures
defined in ADIT

/

Description of variables you

will use in this program

printf("USAGE : samplel <AMSR/L1B filename>\n");

exit(1);
¥

/* V&SD HDF open */
if((file_id=openV(argv[1]))==FAIL) {

fprintf(stderr,"Vdata open error(%s)\n",argv[1]);

exit(1);
h

if((sd_id=openSD(argv([1])) ==FAIL) {

3-5

Description to open SD data
and V data in HDF file

\

fprintf(stderr,"SDdata open error(%s)\n",argv[1]); }
exit(1);
}

Description of reading
"LocalGranuleID" by

/* coremeta read by name call */ / Metadata name

if((get ATTRIBUTE_NAME_AMSR(sd_id,"LocalGranuleID",granuleID))==FAIL)
exit(1);

printf"GRANULE ID(call by NAME) : %s\n",granuleID); | Degcription of reading

"LocalGranuleID" by

Metadata number

/* coremeta read by attr_index call */ -
if((getATTRIBUTE_AMSR(sd_id,3,granuleID))==FAIL) exit(1);
printf("GRANULE ID(call by INDEX) : %s\n",granuleID);

if((get ATTRIBUTE_AMSR(sd_id,28,scannoC))==FAIL) exit(1);
scanno=atoi(scannoC);
printf("SCANNO : %d\n",scanno);

if (get ATTRIBUTE_AMSR(sd_id,7,beginT)==FAIL) exit(1);

if (get ATTRIBUTE_AMSR(sd_id,8,beginD)==FAIL) exit(1);

if (get ATTRIBUTE_AMSR(sd_id,9,endT) ==FAIL) exit(1);

if (get ATTRIBUTE_AMSR(sd_id,10,endD) ==FAIL) exit(1);
printf("OBS. TIME : %s %s - %s %s\n",beginD,beginT,endD,endT);

/* memory allocation */
swathlb = (AMSRL1B_SWATH *)calloc(1,sizeof(AMSRL1B_SWATH));
scantime = (SCAN_TIME *) calloc(1,sizeof(SCAN_TIME));
sunearth = (SUN_EARTH *) calloc(1,sizeof (SUN_EARTH));
statuslb = (STATUS_L1B *) calloc(1,sizeof(STATUS_L1B));
cal = (CAL *) calloc(1,sizeof(CAL));
navi = (NAVI *) calloc(1,sizeof(NAVI));

/* data read every scan */

for(i=0;i<scannosi++)

{

3-6

printf("SCAN NO. %04d/%d\n",i+1,scanno);

if (get AMSRL1B_SWATH(sd_id,file_id,swath1b,i)==FAIL) exit(1);
if (getSCANTIME_AMSRI1(file_id,scantime,i) ==FAIL) exit(1);
if (getSUN_EARTH(sd_id,sunearth,i) ==FAIL) exit(1);

if (getSTATUS_L1B(sd_id,status1b,i) ==FAIL) exit(1);

if (get CALIBRATION(sd_id,cal,i)
if (getNAVIGATION(sd_id,navi,i)
}

/* V&SD close */
closeV(file_id);
closeSD(sd_id);

free(swath1b);
free(scantime);
free(sunearth);
free(status1b);
free(cal);

free(navi);

return 0;

}

*kPlease refer to Chapter 5 about

==FAIL) exit(1);
==FAIL) exit(1);

Descriptions of reading data
and input data to the

structure for each scan

Description of closing HDF
file

the method of accessing a data in a structure.

3-7

3.3 Fortran programming (SunOS version, SGI version)

We explain Fortran programming in this section

3.3.1 Example of Fortran program

A Description of header file

| include ‘AMSR_f.h’

| Description of include file of ADIT for Fortran

B Declaration of Structures

record /AMSRL1B_SWATH/ swathlb | Left: Structure defined in AMSR_f.h

Right: Structure defined by user

C Opening of HDF file

file_id=openV(HDF file name)

file_id: file_id to access V data of HDF
“HDF file name”: HDF file name that you will read

sd_id=openSD(HDF file name)

sd_1d: sd_id is sd_id to access SD data of HDF
“HDF file name”: HDF file name that you will read

D Reading of Meta data

status=getATTRIBUTE_NAME_AMSR(sd_id, LocalGranuleID',granuleID)

sd_id: sd_id 1s sd_id to access SD data of HDF
“HDF file name”: HDF file name that you will read

E Reading of scan data

Reading data for each scan

do 10 i=0,scanno-1,1

10 continue

status=get AMSRL1B_SWATH(sd_id, file_id,swath1b,i)

“sd_id”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user
“1”t Variable for “do loop”

Reading data for number of scans

status = get AMSRL1B_SWATH _line(sd_id,file_id,swath1b,start_scan,end_scan);

“sd_id”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user
“start_scan” start scan No.(Beginning0)
“end_scan”: end scan No. (Beginning0)

3-8

F Closing of HDF file

status = closeV(file_id) Description of closing V data
“file_id”: file_id that you get at C step
status = closeSD(sd_id) Description of closing SD data

“sd_id”: sd_id that you get at C step.

3-9

3.3.2 How to compile

We explain how to compile the {77 program at some kinds of platforms. About LINUX
OS, FORTRAN does not supported.

A SUN (Solaris 8)
Note: Use compiling option ” -DSUN -Ilnsl -Im.”

f77 -DSUN -Insl -0 samplelf samplelf.f \
-I’/home/amsr/work/ADITv3.00/include -I'home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-JIADIT -lmfhdf -1df -1z [-]jpeg] -Im

B SGI (IRIX6.5)
Note: Use compiling option “-DSGI -1m.”

f77 -DSGI -0 samplelf samplelf.f \

-I/home/amsr/work/ADITv3.00/include -I/home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-IADIT -Imfhdf -1df -1z [-]jpeg] -Im

3-10

3.3.3 Sample program code for Fortran

We explain samplelf.f in this section.

program main Description of header file for

Fortran to use ADIT

include 'AMSR_f.h' «— |

character*30 fname

data fname/'A2AMS01092011MD_P01B0000000.00'/
integer status

integer i,scanno

integer file_id,sd_id

character*10 scannoC

character*40 granulelD

character*20 beginD,beginT Declaration of structures

character*20 endD,endT defined in ADIT

record /SCAN_TIME/ scantime
record /SUN_EARTH/ sunearth
record /STATUS_L1B/ statuslb >
record /CAL/ cal

record /NAVI/ navi

record /AMSRL1B_SWATH/ swath1b /

Description of opening SD
C* V&SD HDF open "\ | data and V data of HDF

file_id=openV(fname)
if(file_id .eq. FAIL) then

write(6,'(a,a,a)") 'Vdata open error(,fname,")’

stop >
end if

sd_id=openSD(fname)
if(sd_id .eq. FAIL) then

write(6,'(a,a,a)") 'SDdata open error(',fname,"'

stop j

3-11

end if } Description of reading
"LocalGranuleID" by

Metadata name
C* coremeta read by name call

status=getATTRIBUTE_NAME_AMSR(sd_id, LocalGranuleID',granuleID)
if(status .eq. FAIL) stop
write(6,'(a,a27)") 'GRANULE ID(call by NAME) : ',granulelD

Description of reading

C* coremeta read by attr_index call / "LocalGranuleID" by
status=getATTRIBUTE_AMSR(sd_id,3,granuleID) | Metadata index number

if(status .eq. FAIL) stop
write(6,'(a,a27)") 'GRANULE ID(call by INDEX) : ',granuleID

status=get ATTRIBUTE_AMSR(sd_id,28,scannoC)
if(status .eq. FAIL) stop
write(6,*) ichar(scannoC(1:1))
scanno=(ichar(scannoC(1:1))-48)*1000
+ +(ichar(scannoC(2:2))-48)*100
+ +(ichar(scannoC(3:3))-48)*10
+ +(ichar(scannoC(4:4))-48)
write(6,'(a,i4)") 'SCANNO : ',scanno

status=getATTRIBUTE_AMSR(sd_id,7,beginD)
if(status .eq. FAIL) stop

status=get ATTRIBUTE_AMSR(sd_id,8,beginT)
if(status .eq. FAIL) stop
status=getATTRIBUTE_AMSR(sd_id,9,endD)
if(status .eq. FAIL) stop

status=get ATTRIBUTE_AMSR(sd_id,10,endT)
if(status .eq. FAIL) stop
write(6,'(a,al2,a,a10,a,a12,a,a10)")

* 'OBS. TIME : ',beginD,' ',beginT,

* '-'endD,' ',endT

C* data read every scan

3-12

do 10 1=0,scanno-1,1
write(6,'(a,i4.4,a,i4.4)") 'SCAN NO. ',i+1,"/",scanno
status=get AMSRL1B_SWATH(sd_id, file_id,swath1b,i)
if(status .eq. FAIL) stop
status=getSCANTIME_AMSR1(file_id,scantime,i)
if(status .eq. FAIL) stop
status=getSUN_EARTH(sd_id,sunearth,i)
if(status .eq. FAIL) stop
status=getSTATUS_L1B(sd_id,status1b,i)
if(status .eq. FAIL) stop
status=get CALIBRATION(sd._id,cal,i)
if(status .eq. FAIL) stop
status=getNAVIGATION(sd_id,navi,i)
if(status .eq. FAIL) stop

10 continue /

C* V&SD close
status=closeV(file_id)
status=closeSD(sd_id)

Descriptions of reading data
and input data to the

structure for each scan

stop

end

Description of closing SD
data and V data of HDF

*Please refer to Chapter 5 about the method of accessing a data in a structure.

3-13

3.4 Fortran programming(Linux version)

We explain Fortran programming in this section

3.4.1 Example of Fortran program

A Description of header file

| include ‘AMSR_Linux_ f.h’ | Description of include file of ADIT for Fortran

B Declaration of Structures

TYPE (AMSRL1B_SWATH) swathlb | Left: Structure defined in AMSR_Linux_f.h
Right: Structure defined by user

C Opening of HDF file

file_id=openV(HDF file name) file_id: file_id to access V data of HDF
“HDF file name”: HDF file name that you will read

sd_id=openSD(HDF file name) sd_1d: sd_id is sd_id to access SD data of HDF
“HDF file name”: HDF file name that you will read

D Reading of Meta data

status=getATTRIBUTE_NAME_AMSR(sd_id, LocalGranuleID',granuleID)

sd_id: sd_id 1s sd_id to access SD data of HDF
“HDF file name”: HDF file name that you will read

E Reading of scan data

Reading data for each scan

do 10 i=0,scanno-1,1
status=get AMSRL1B_SWATH(sd_id, file_id,swath1b,i)
10 continue

“sd_id”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user
“1”t Variable for “do loop”

Reading data for number of scans

status = get AMSRL1B_SWATH _line(sd_id,file_id,swath1b,start_scan,end_scan);

“sd_id”: sd_id that you get at C step.
“file_id”: file_id that you get at C step
“swath1b”: structure name defined by user
“start_scan” start scan No.(Beginning0)
“end_scan”: end scan No. (Beginning0)

3-14

F Closing of HDF file

status = closeV(file_id) Description of closing V data
“file_id”: file_id that you get at C step
status = closeSD(sd_id) Description of closing SD data

“sd_id”: sd_id that you get at C step.

3-15

3.4.2 How to compile

We explain how to compile the f77 program at some kinds of platforms.

A pgi
Note: Use compiling option ” -DLINUX -O -1lm.”

pef90 -DLINUX -O -o samplelf samplelf.f \
-I’home/amsr/work/ADITv3.00/include -I'home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-JIADIT -lmfhdf -1df -1z [-]jpeg] -Im

B gun
Note: Use compiling option ““DLINUX -O -Im.”

gfortran -DLINUX -O -o samplelf samplelf.f \
-I/home/amsr/work/ADITv3.00/include -I/home/amsr/work/HDF4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4.2r5/1ib\

-IADIT -Imfhdf -1df -1z [-]jpeg] -Im

C Intel
Note: Use compiling option ” -DLINUX_-O -Im.”

ifort -DLINUX_-O -o samplelf samplelf.f \
-I’/home/amsr/work/ADITv3.00/include -I’/home/amsr/work/HDF4. 4.2r5/include\
-L/home/amsr/work/ADITv3.00/1ib -L/home/amsr/work/HDF4. 4.2r5/1ib\
-IADIT-Imfhdf -1df -1z [-]jpeg] -1m

3-16

3.4

We

100
101

.3 Sample program code for Fortran

explain samplelf.f in this section.

program main Description of header file for

Fortran to use ADIT
include 'AMSR. Linux fh' < |

character*10 scannoC
character*40 granulelD
character*20 beginD, beginT
character*20 endD, endT
character buff*100

data fname /'../data/P1AME030609207MA_P01B0000000. 00. sample’ /
data LOCALGRANULEID /' LocalGranulelD’ /

character*10 scannoC
character*40 granulelD
character*20 beginD,beginT
character*20 endD,endT
character buff*100

TYPE (AMSRL1B_SWATH) swath1b
TYPE (SCAN_TIME) scantime
TYPE (SUN_EARTH) sunearth «—
TYPE (STATUS_L1B) statuslb >

Declaration of structures
defined in ADIT

TYPE (CAL) cal_data
TYPE (NAVID) navi_data

do 100 i=1,100, 1

if(fname(i:i).eq.” ') go to 101
continue
fname (i : i) =char (0)

do 110 i=1,100, 1

3-17

i f (LOCALGRANULEID(i:i).eq.” ') go to 111
110 continue
111 LOCALGRANULEID (i : i) =char (0)

Description of opening SD
C* V&SD HDF open \ | data and V data of HDF

file_id=openV(fname)
if(file_id .eq. FAIL) then

write(6,'(a,a,a)") 'Vdata open error(,fname,")’

stop
end if >
sd_id=openSD(fname)
if(sd_id .eq. FAIL) then

write(6,'(a,a,a)") 'SDdata open error(,fname,"'

stop Description of reading

end if j "LocalGranuleID" by

Metadata name
C* coremeta read by name call

status=getATTRIBUTE_NAME_AMSR(sd_id, LocalGranuleID',granuleID)
if(status .eq. FAIL) stop
write(6,'(a,a27)") 'GRANULE ID(call by NAME) : ',granulelD

C* coremeta read by attr_index call / Description of reading
status=getATTRIBUTE_AMSR(sd_id,3,granulelD) | LocalGranuleID"
if(status .eq. FAIL) stop
write(6,'(a,a27)") 'GRANULE ID(call by INDEX) : ',granuleID

by Metadata index

status=get ATTRIBUTE_AMSR(sd_id,28,scannoC)
if(status .eq. FAIL) stop
write(6,*) ichar(scannoC(1:1))
scanno=(ichar(scannoC(1:1))-48)*1000
+ +(ichar(scannoC(2:2))-48)*100
+ +(ichar(scannoC(3:3))-48)*10
+ +(ichar(scannoC(4:4))-48)
write(6,'(a,i4)") 'SCANNO : ',scanno

status=get ATTRIBUTE_AMSR(sd_id,7,beginD)

3-18

if(status .eq. FAIL) stop
status=getATTRIBUTE_AMSR(sd_id,8,beginT)
if(status .eq. FAIL) stop
status=getATTRIBUTE_AMSR(sd_id,9,endD)
if(status .eq. FAIL) stop
status=getATTRIBUTE_AMSR(sd_id,10,endT)
if(status .eq. FAIL) stop
write(6,'(a,al2,a,a10,a,a12,a,a10)")

* 'OBS. TIME : ',beginD,' ',beginT,

* '-'endD,' ',endT

C* data read every scan
do 10 1=0,scanno-1,1

write(6,'(a,i4.4,a,i4.4)") 'SCAN NO. ',i+1,"/",scanno
status=get AMSRL1B_SWATH(sd_id, file_id,swath1b,i)
if(status .eq. FAIL) stop
status=getSCANTIME_AMSR1(file_id,scantime,i)
if(status .eq. FAIL) stop
status=getSUN_EARTH(sd_id,sunearth,i)
if(status .eq. FAIL) stop
status=getSTATUS_L1B(sd_id,status1b,i)
if(status .eq. FAIL) stop
status=get CALIBRATION(sd._id,cal,i)
if(status .eq. FAIL) stop
status=getNAVIGATION(sd_id,navi,i)
if(status .eq. FAIL) stop

10 continue

C* V&SD close
status=closeV(file_id)
status=closeSD(sd_id)

Descriptions of reading
data and input data to the

structure for each scan

Description of closing SD
stop data and V data of HDF

end

*Please refer to Chapter 5 about the method of accessing a data in a structure.

3-19

4 APPENDIX
4.1 Routines defined in ADIT

Specific routines handle the specific level of AMSR/AMSR-E products. The detailed

descriptions of these routines are introduced in a later section.

Table 4.1-1 Routine table in ADIT

Product

Routine

level name Description
L1B openV() File open and initialize for HDF/Vdata
L2 closeV0 File close for HDF/Vdata
L3 openSD() File open and initialize for HDF/SDdata
closeSD() File close for HDF/SD data

getATTRIBUTE_NAME_AMSR(

Read metadata (by “metadata name”) (See Section 4.4.)

getATTRIBUTE_AMSR()

Read metadata (by “attr index”) (See Section 4.4.)

L1B Read HDF and input data to the structure
getAMSRL1B_SWATHO “AMSRL1B_SWATH” (See Section 4.3.2.)
Read HDF and input data to the structure
getSCANTIME_AMSR10 “SCAN_TIME” (See Section 4.3.1.)
Read HDF and input data to the structure
getSUN_EARTHO “SUN_EARTH” (See Section 4.3.3.
Read HDF and input data to the structure
getSTATUS_L1B0 “STATUS_L1B” (See Section 4.3.4.)
et CALIBRATION() Reaq HDF and input data to the structure “CAL” (See
Section 4.3.5.)
getNAVIG ATIONO Read HDF and input data to the structure “NAVI” (See
Section 4.3.6.)
The data of 89GHz low frequency corresponding is
getAMSR_89LOW() calculated from 89GHz A horn and B horn.
. Read HDF and input data to the structure
getAMSRL1B_SWATH_line(“AMSRL1B_SWATH” (See Section 4.3.2.)
. Read HDF and input data to the structure
getSCANTIME_AMSRI1_line (“SCAN_TIME” (See Section 4.3.1.)
. Read HDF and input data to the structure
getSUN_EARTH line 0 “SUN_EARTH” (See Section 4.3.3.
. Read HDF and input data to the structure
getSTATUS_L1B line 0 “STATUS_L1B” (See Section 4.3.4.)
et CALIBRATION line () Reaq HDF and input data to the structure “CAL” (See
Section 4.3.5.)
getNAVIGATION. line 0 Read HDF and input data to the structure “NAVI” (See
Section 4.3.6.)
L2 Read HDF and input data to the structure
getAMSRL2_SWATHO “AMSRL2_SWATH” (See Section 4.3.7.
Read HDF and input data to the structure
getSCANTIME_AMSR20 “SCAN_TIME” (See Section 4.3.1.)
Read HDF and input data to the structure
getSTATUS_L20 “STATUS_L2” (See Section 4.3.8.
. Read HDF and input data to the structure
getAMSRL2_SWATH line 0 “AMSRL2_SWATH” (See Section 4.3.7.)
. Read HDF and input data to the structure
getSCANTIME_AMSR2 line 0 luqoAN TIME” (See Section 4.3.1.)
getSTATUS_L2_line 0 Read HDF and input data to the structure

4-1

Product Routine .o
Description
level name
“STATUS_L2” (See Section 4.3.8.)
L3 Read L3 science data and input it to data, which you

getAMSRL3_MAP()

prepared (See Section 4.3.9.)

getDIMSIZE(

Access L3 data and get information of L3 science data
sizes (See Section 4.3.9.)

4-2

4.2 User routine interface in ADIT

User routine interface in ADIT is shown in Table 4.2-1 for C program, and Table 4.2-2

for f77 program.

Table 4.2-1 Routine interface for C
Note: int32 means 4byte int.

Routine name Parameter Parameter Type (I)I;I;;gt Note

file_id = openV (Filename)
file_id int32 Output If failed, return value is FAIL (or -1)
File_name char * Input AMSR/AMSR-E HDF Filename

status = closeV (file_id)
status int32 Qutput If failed, return value is FAIL (or -1)
file_id int32 Input HDF/Vdata access file id

sd_id = openSD (Filename)
sd_id int32 Output If failed, return value is FAIL (or -1)
File_name char * Input AMSR/AMSR-E Filename

status = closeSD (sd_id)
status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

status = getATTRIBUTE_NAME_AMSR (sd_id,name,value)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input If failed, return value is FAIL (or -1)
name char * Input Metadata name (See Section 4.4.)
value char * Output Metadata values (See Section 4.4.)

status = getATTRIBUTE_AMSR (sd_id,index,value)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input If failed, return value is FAIL (or -1)
index int32 Input Metadata index (See Section 4.4.)
value char * Output Metadata values (See Section 4.4.)

status = get AMSRL1B_SWATH (sd_id,file_id,amsrl1b_swath,scan)

status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

file_id int32 Input HDF/Vdata access file id
amsrllb_swath [AMSRL1B_SWATH * |Output information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

status = getSCANTIME_AMSR1 (sd_id,scan_time,scan)

status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
scan_time SCAN_TIME * Qutput information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

status = getSUN_EARTH (sd_id,sun_earth,scan)
status int32 Qutput If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
sun_earth SUN_EARTH * Output information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

status = getSTATUS_L1B (sd_id,status_l1b,scan)
status int32 Qutput If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
status_l1b STATUS_L1B * Output information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

Table 4.2-1 Routine interface for C
Note: int32 means 4byte int.

Routine name Parameter Parameter Type (I)I;Iz;gt Note

status=get CALIBRATION (sd_id,cal,scan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
cal CAL * Qutput information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

status = getNAVIGATION (sd_id,navi,scan)
status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
navi NAVI * Output information structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)

status = getAMSR,_89LOW (sd_i

d,pol_id,para_name_A,para_name

_B,bt_89low)

status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

pol_id int32 Input Polarization id (V-pol : 0, H-pol:1)
para_name_A [char * Input Parameter file for A horn 1
para_name_B [char * Input Parameter file for B horn (1
bt_89low float * Output equivalent of 89GHz low frequency

data

status = getAMSRL1B_SWATH_

line (sd_id,file_id,amsrllb_swath,start_scan,end_scanscan)

status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

file_id int32 Input HDF/Vdata access file id
amsrllb_swath [AMSRL1B_SWATH * |Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)

end_scan Int32 Input End scan No. (Beginning0)

status = getSCANTIME_AMSR1_line (sd_id,scan_time

start_scan,end_scanscan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
scan_time SCAN_TIME * Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)
end_scan Int32 Input End scan No. (Beginning0)

status = getSUN_EARTH_line (sd_id,sun_earth,start_scan,end_scanscan)

status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

sun_earth SUN_EARTH * Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)

end_scan Int32 Input End scan No. (Beginning0)

status = getSTATUS_L1B_line (sd_id,status_l1b,start_scan,end_sc

anscan)

status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

status_l1b STATUS_L1B * Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)

end_scan Int32 Input End scan No. (Beginning0)

status=getCALI

BRATION line (sd_id,cal,start_scan,end_scanscan)

status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

cal CAL * Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)

end_scan Int32 Input End scan No. (Beginning0)

status = getNAVIGATION line (sd_id,navi,start_scan,end_scanscan)

status

int32

Output

If failed, return value is FAIL (or -1)

sd_id

int32

Input

HDF/SD access SD id

Table 4.2-1 Routine interface for C

Note: int32 means 4byte int.

Routine name Parameter Parameter Type (I)?fz;gt Note
navi NAVI * Output information structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)
end_scan Int32 Input End scan No. (Beginning0)
status = getAMSRL2 SWATH (sd_id,file_id,amsrl2_swath,scan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
file_id int32 Input HDF/Vdata access file id
amsrl2_swath |[AMSRL2_SWATH * |Output structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)
status = getSCANTIME_AMSR2 (sd_id,scan_time,scan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
scan_time SCAN_TIME * Output structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)
status = getSTATUS_L2 (sd_id,status_l2,scan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
status_lI2 STATUS_L.2 * Output structure defined in ADIT
scan int32 Input Scan No.(Beginning 0)
status = getAMSRL2_SWATH_line (sd_id,file_id,amsrl2_swath,start_scan,end_scanscan)
status int32 Qutput If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
file_id int32 Input HDF/Vdata access file id
amsrl2_swath [AMSRL2_SWATH * |Output structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)
end_ scan Int32int32 Input End scan No. (Beginning0)
status = getSCANTIME_AMSR2_line (sd_id,scan_time,start_scan,end_scanscan)
status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
scan_time SCAN_TIME * Qutput structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)
end_ scan Int32int32 Input End scan No. (Beginning0)
status = getSTATUS_L2_line (sd_id,status_12,start_scan,end_scanscan)
status int32 Output If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
status_lI2 STATUS_L2 * Output structure defined in ADIT
start_scan int32 Input Start scan No.(Beginning0)
end_scan Int32int32 Input End scan No. (Beginning0)
status = get AMSRL3_MAP (sd_id, file_id, map_2int,map_float,size)
status int32 Qutput If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id
file_id int32 Input HDF/Vdata access file id
map_2int short * Output L3 science data buffer, which has type
of short
map_float float * Output L3 science data, which has type of
float
size int Input L3 science data size, which has value
of n line x n pixel
status = getDIMSIZE (sd_id,ref_no,SIZE)
sd_id int32 Input HDF/SD access SD id
ref_no int32 Input HDF/SD access SD reference number
SIZE int32 * Output L3 science data size, which has value

Table 4.2-1 Routine interface for C

Note: int32 means 4byte int.

Routine name Parameter

Parameter Type

Input/
Output

Note

of n line x n pixel

1 The storage directory of parameter files

AMSR

Parameter file for A horn

(install directory)/MAKE_89_LOW_PAM/A2AMS/A289A.prm

Parameter file for B horn

(install directory)/MAKE_89_LOW_PAM/A2AMS/A289B.prm

AMSR-E

Parameter file for A horn

(install directory)/MAKE_89_LOW_PAM/P1AME/P189A.prm

Parameter file for B horn

(install directory)/MAKE_89_LOW_PAM/P1AME/P189B.prm

4-6

Table 4.2-2 Routine interface for 77

Note: integer*2 means 2byte int, and real*4 means 4byte real.

Routine Input/
name Parameter | Parameter Type Output Note

file_id = openV (Filename)
file_id integer Output If failed, return value is FAIL (or -1)
File_name character Input AMSR/AMSR-E HDF Filename

status = closeV (file_id)
status integer Output If failed, return value is FAIL (or -1)
file_id integer Input HDF/Vdata access file id

sd_id = openSD (Filename)
sd_id integer Output If failed, return value is FAIL (or -1)
File_name character Input AMSR/AMSR-E Filename

status = closeSD (sd_id)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

status = getATTRIBUTE_NAME_AMSR (sd_id,name,value)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input If failed, return value is FAIL (or -1)
name character Input Metadata name (See Section 4.4.)
value character Qutput Metadata values (See Section 4.4.)

status = getATTRIBUTE_AMSR (sd_id,index,value)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input If failed, return value is FAIL (or -1)
index integer Input Metadata index (See Section 4.4.)
value character Output Metadata values (See Section 4.4.)

status = get AMSRL1B_SWATH (sd_id,file_id,amsrl1b_swath,scan)

status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

file_id integer Input HDF/Vdata access file id
amsrllb_swath |AMSRL1B_SWATH [Output information structure defined in ADIT
scan integer Input Scan No.(Beginning 0)

status = getSCANTIME_AMSR1 (sd_id,scan_time,scan)

status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
scan_time SCAN_TIME Qutput information structure defined in ADIT
scan integer Input Scan No.(Beginning 0)

status = getSUN_EARTH (sd_id,sun_earth,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
sun_earth SUN_EARTH Output information structure defined in ADIT
scan integer Input Scan No.(Beginning 0)

status = getSTATUS_L1B (sd_id,status_l1b,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
status_l1b STATUS_L1B Output information structure defined in ADIT
scan integer Input Scan No.(Beginning 0)

status=get CALIBRATION (sd_id,cal,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
cal CAL Output information structure defined in ADIT

Table 4.2-2 Routine interface for 77

Note: integer*2 means 2byte int, and real*4 means 4byte real.

Routine

Input/

name Parameter | Parameter Type Output Note
scan integer Input Scan No.(Beginning 0)
status = getNAVIGATION (sd_id,navi,scan)
status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
navi NAVI Qutput information structure defined in ADIT
scan integer Input Scan No.(Beginning 0)

status = getAMSR_89LOW (sd_i

d,pol_id,para_name_A,para_name

_B,bt_89low)

status int32 Output |If failed, return value is FAIL (or -1)
sd_id int32 Input HDF/SD access SD id

pol_id int32 Input Polarization id (V-pol : 0, H-pol:1)
para_name_A [char * Input Parameter file for A horn 02
para_name_B [char * Input Parameter file for B horn (2
bt_89low float * Output equivalent of 89GHz low frequency

data

status = getAMSRL1B_SWATH_

line (sd_id,file_id,amsrllb_swath,start scan,end_scan)

status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

file_id integer Input HDF/Vdata access file id
amsrllb_swath [AMSRL1B_SWATH |Output information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

status = getSCANTIME_AMSR1_line (sd_id,scan_time

start_scan,

end_scan)

status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

scan_time SCAN_TIME Output information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

status = getSUN_EARTH_line (sd_id,sun_earth,start_scan,end_scan)

status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

sun_earth SUN_EARTH Qutput information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

status = getSTATUS_L1B_line (sd_id,status_l1b,start_scan,end_scan)

status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

status_l1b STATUS_L1B Output information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

status=getCALI

BRATION line (sd_id,cal,start_scan,end_scan)

status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

cal CAL Output information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

status = getNAVIGATION_line (

sd_id,navi,start_scan,end_scan)

status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id

navi NAVI Output information structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)

end_scan integer Input End scan No. (Beginning0)

Table 4.2-2 Routine interface for 77

Note: integer*2 means 2byte int, and real*4 means 4byte real.

Routine

Input/

name Parameter | Parameter Type Output Note
status = getAMSRL2_SWATH (sd_id,file_id,amsrl2_swath,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
file_id integer Input HDF/Vdata access file id
amsrl2_swath [AMSRL2_SWATH Qutput structure defined in ADIT
scan integer Input Scan No.(Beginning 0)
status = getSCANTIME_AMSR2 (sd_id,scan_time,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
scan_time SCAN_TIME Output structure defined in ADIT
scan integer Input Scan No.(Beginning 0)
status = getSTATUS_L2 (sd_id,status_l2,scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
status_l12 STATUS_L2 Qutput structure defined in ADIT
scan integer Input Scan No.(Beginning 0)
status = getAMSRL2_SWATH_line (sd_id,file_id,amsrl2_swath,start_scan,end_scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
file_id integer Input HDF/Vdata access file id
amsrl2_swath [AMSRL2_SWATH Qutput structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)
end_scan integer Input End scan No. (Beginning0)
status = getSCANTIME_AMSR2_line (sd_id,scan_time,start_scan,end_scan)
status integer Output |If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
scan_time SCAN_TIME Qutput structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)
end_scan integer Input End scan No. (Beginning0)
status = getSTATUS_L2_line (sd_id,status_l2,start_scan,end_scan)
status integer Output If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
status_I2 STATUS_L2 Output structure defined in ADIT
start_scan integer Input Start scan No.(Beginning0)
end_scan integer Input End scan No. (Beginning0)
status = getAMSRL3_MAP (sd_id, file_id, map_2int,map_float,size)
status integer Qutput If failed, return value is FAIL (or -1)
sd_id integer Input HDF/SD access SD id
file_id integer Input HDF/Vdata access file id
map_2int integer*2 Output L3 science data buffer, which has type
of 2byte int
map_float real*4 Output L3 science data, which has type of
4byte real
size integer Input L3 science data size, which has value
of n line x n pixel
status = getDIMSIZE (sd_id,ref_no,SIZE)
sd_id integer Input HDF/SD access SD id
ref_no integer Input HDF/SD access SD reference number
SIZE integer Output L3 science data size, which has value

of n line x n pixel

¥ 2 The storage directory of parameter files

AMSR
Parameter file for A horn

(install directory)/MAKE_89_LOW_PAM/A2AMS/A289A.prm
Parameter file for B horn

(install directory)/MAKE_89_LOW_PAM/A2AMS/A289B.prm
AMSR-E
Parameter file for A horn

(install directory)/MAKE_89_LOW_PAM/P1AME/P189A.prm
Parameter file for B horn

(install directory)/MAKE_89_LOW_PAM/P1AME/P189B.prm

4-10

4.3 Structure definition in ADIT

You can read AMSR/AMSR-E data in HDF file using structures defined in ADIT. Using

these structures, you can read specific data in the HDF file.

Table 4.3-1 Structure definitions

Product Structure .
Description
level name
L1B,L.2 SCAN_TIME Information structure of the observational scanning time
L1B AMSRL1B_SWATH Information structure of swath data. The member of this structure
1s as follows.
1. structure “SCAN_TIME”
2. Brightness Temperature
3. Latitude and Longitude of the observation point
SUN_EARTH Information structure of angle data related to observation point,
sun, and platform.
The member of this structure is as follows.
1. Sun Azimuth
2. Sun Elevation
3. Earth Incidence
4. Earth Azimuth
5. Ocean/Lanf flag
STATUS_L1B Information structure related to status of the observation data.
The member of this structure is as follows.
1. Orbit number
2. Observation Supplement
3. Data Quality
CAL Information structure of calibration data.
The member of this structure is as follows.
1. Hot-load Count
2. Cold Sky Mirror Count
3. Antenna Temperature Coefficient
4. RX Offset/Gain Count
5. SPC Temperature Count
6. SPS Temperature Count
7. SPC Temperature
8. SPS Temperature
NAVI Information structure of navigation data.
The member of this structure is as follows.
1. platform position(X,Y,Z) in inertial coordinate
2. platform velocity(Vx,Vy,Vz) in inertial coordinate
3. platform attitude(roll,pitch,yaw) in platform coordinate
L2 AMSRL2_SWATH Information structure of swath data. The member of this structure

is as follows.

1. structure “SCAN_TIME”

2. Geophysical data

3. Latitude and Longitude of the observation point

STATUS_L2

Information structure of status of the observation data.
The member of this structure is as follows.

1. Orbit number

2. Data Quality

4-11

4.3.1 L1B, L2 common structure

Table 4.3.1-1 L1B, L2 common structures

si];fclfu?ri member type size Description
SCAN_TIME koyomi 8byte real 1|total second beginning 1970/1/1 0:0

year 2byte int 1|year (UT)

month 2byte int 1|month (UT)

day 2byte int 1|day (UT)

hour 2byte int 1{hour (UT)

minute 2byte int 1{minute (UT)

second 2byte int 1|second (UT)

(1) SCAN_TIME

“SCAN_TIME” is the structure of scanning start time of the observation. This scanning

start time corresponds to the first point of observation in a scan. The member “koyomi” is the

total seconds from 1970.01.01.00.00 (Unix system time). Though original scanning start time
in L1B products is the total seconds from 1993.01.01.00 by UT (TAI time), ADIT converts TAI

time into Unix system time for scanning start time.

4.3.2 AMSRL1B_SWATH (for L1B)

Table 4.3.2-1 AMSRL1B_SWATH

Name of
structure

member

type

size

Description

AMSRL1B_
SWATH

scan_time

SCAN_TIME

20

structure SCAN_TIME

th_low

4byte real

12x 196

TB data for lower frequency channels
Dimension: n channel x n pixel

Variable numbers are defined as follows.
AMSR-E does not have frequency 50GHz and
52GHz band, therefore these two band data are
set to zero in every scan and pixel.

1: 6GHz vertical elements TB data [K]

: 6GHz horizontal elements TB data [K]

: 10GHz vertical elements TB data [K]

: 10GHz horizontal elements TB data [KI]

: 18GHz vertical elements TB data [K]

: 18GHz horizontal elements TB data [K]

: 23GHz vertical elements TB data [K]

: 23GHz horizontal elements TB data [K]

: 36GHz vertical elements TB data [K]

10: 36GHz horizontal elements TB data [K]

11: 50GHz vertical elements TB data [K]

12: 52GHz vertical elements TB data [K]

0 3 O Ut W N

©

th_high A

4byte real

392

TB data for 89GHz channels (A-scan)
Dimension: n channel x n pixel
Variable numbers are defined as follows.

1: 89GHz A-horn vertical elements TB data [K]

4-12

2: 89GHz A-horn horizontal elements TB data
K]

th_high_B

4byte real

2x 392

TB data for 89GHz channels (B-scan)
Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz B-horn vertical elements TB data [K]
2: 89GHz B-horn horizontal elements TB data
K]

latlon_low

4byte real

6x2 x 196

Geolocation of the observation point for each
lower channels

Dimension: n channel x n geolocation variable x
n pixel.

Lower channel variable numbers are defined as
follows. AMSR-E does not have frequency
50GHz and 52GHz band, therefore the 6th data
are set to —9999.01n every scan and pixel.

1: 6GHz elements data

: 10GHz elements data

: 18GHz elements data

: 23GHz elements data

: 36GHz elements data

: 50GHz elements data

Geolocation variable numbers are defined as
follows.

1: latitude [deg]

2: longitude [deg]

O v W N

o]

latlon_low_m
ean

4byte real

2x 196

Geolocation of the observation mean point for
lower channels (simple mean value)
Dimension: n geolocation variable x n pixel.
Variable numbers are defined as follows.

1: latitude [deg]

2: longitude [deg]

latlon_high_ A

4byte real

2x 392

Geolocation of the observation point for 89GHz
channels (A-scan).

Dimension: n geo-location variable x n pixel
Variable numbers are defined as follows.

1: latitude [deg]

2: longitude [deg]

latlon_high_B

4byte real

2x 392

Geolocation of the observation point for 89GHz
channels (B-scan).

Dimension: n geo-location variable x n pixel
Variable numbers are defined as follows.

1: latitude [deg]

2: longitude [deg]

(1) scan_time

“scan_time” is the structure whose type is the structure “SCAN_TIME.”

(2) tb_low

“tb_low,” whose dimensions are 12 x 196, is the brightness temperature (TB data) of the

lower frequency channels. The size “12” means the number of lower channel variables. The

first element is 6GHz-Vertical data, the second is 6GHz-Horizontal data, the third is
10GHz-Vertical data,...., the eleventh is 50GHz-Vertical data, and the twelfth is

4-13

52GHz-Vertical data.

The size “196” is the number of samples for each scan. The unit is [K].

Table 4.3.2-1 Brightness temperature data value table

value of data meaning of data value
positive normal data
negative questionable data
-32768 parity error data
-9999 missing packet data

(3) tb_high_A

“tb_high_A,” whose dimensions are 2 x 392, is the data of Brightness Temperature of
89GHz channels of A-scan. “2” indicates the dimension of the polarization on the A-horn. The
first element is the 89.0GHz-Vertical-A data, and the second is the 89.0GHz-Horizontal-A
data.

“392” indicates the number of samples for each scan. Channel element values have the

same meaning as in “tb_low.” (See Table 4.3.2-1.)

(4) tb_high_B
“tb_high_B,” whose dimensions are 2 x 392, is the data of Brightness Temperature of 89GHz
channels of B-scan. “2” indicates the dimension of the polarization on the B-horn. The first
element is the 89.0GHz-Vertical-B data, and the second is the 89.0GHz-Horizontal-B data.
“392” indicates the number of samples for each scan. Channel element values have the

same meaning as in “tb_low.” (See Table 4.3.2-1.)

(5) latlon_low, latlon_low_mean

“latlon_low” is the latitude and longitude of the observation point in a scan for each lower
frequency channels, “latlon_low_mean” has representative value (simple mean) of latitude
and longitude for all lower frequency channels. There are 196 points in a scan. “latlon_low”
and “latlon_low_mean” are in degrees. The latitude ranges from -90 to 90; positive value is
north latitude, and negative value is south latitude. The longitude ranges from -180 to 180.

(See Table 4.3.2-2 and Table 4.3.2-3.)

Table 4.3.2-2 Latitude data value table

value of data meaning of data value
90~ 0 north latitude data
0~90 south latitude data
-9999 missing packet data

4-14

Table 4.3.2-3 Longitude data value table

value of data meaning of data value
-180~ 0 west longitude data
0~180 east longitude data
-9999 missing packet data

(6) latlon_high_A

“latlon_high_A” is the latitude and longitude of the observation point in a scan for 89GHz
A-scan. There are 392 points in a scan. “latlon_high_A” has units of [deg]. The latitude
ranges from —90 to 90, positive value is north latitude, and negative value is south latitude.

The longitude ranges from —180 to 180. (See Table 4.3.2-2 and Table 4.3.2-3.)

(7) latlon_high_B

“latlon_high_B” is the latitude and longitude of the observation point in a scan for 89GHz
Bb-scan. There are 392 points in a scan. “latlon_high_B” has units of [deg]. The latitude
ranges from -90 to 90, positive value is north latitude, and negative value is south latitude.

The longitude ranges from -180 to 180. (See Table 4.3.2-2 and Table 4.3.2-3.)

4.3.3 SUN_EARTH (for L1B)

Table 4.3.3-1 SUN_EARTH

st;uI?fu(;i member type size Description
SUN_EARTH sun_azimuth 4byte real 196|Sun azimuth angle [deg]
sun_elev 4byte real 196/Sun elevation angle [deg]
earth_incid 4byte real 196|Earth incident angle [deg]
earth_azimuth 4byte real 196|Earth azimuth angle [deg]
ol_flag 2byte int 7 X 196|Ocean/Land flag

(1) sun_azimuth

“sun_azimuth” is the Sun azimuth angle at an observation point. The definition is shown in
Fig 4.7.3-1 and the range is 360 degree. This data is calculated corresponding to the
observation points of 6.GHz to 36GHz. This value is calculated for the representative point of

the lower frequency channels (e.g. latitudes and longitudes in “latlon_low_mean.”)

(2) sun_elev

“sun_elev” is the Sun elevation angle at an observation point. The definition is shown in Fig
4.7.3-1 and the range is -90.0 to 180 degrees. Calculated values less than —90.0 degrees will
be set to —32687, calculated values exceeding 180 degrees will be set to 32768. For other

errors case, it will be set to -32768. The data calculated corresponding to the observation

4-15

points of 6GHz to 36GHz. This value is calculated for the representative point of the lower

frequency channels (e.g. latitudes and longitudes in “latlon_low_mean.”)

(3) earth_incid

“earth_incid” is the Earth incidence angle at an observation point. The definition is shown
in Fig 4.7.3-2 and the range is -90.0 to 180 degrees. Calculated value less than —90.0 will be
set to —32687, Calculated values exceeding 180 degrees will be set to 32768. For other errors
will be set to -32768. The data calculated corresponding to the observation points of 6GHz to
36GHz. This value is calculated for the representative point of the lower frequency channels

(e.g. latitudes and longitudes in “latlon_low_mean.”)

(4) earth_azimuth

“earth_azimuth” is the Earth azimuth angle, which is defined as the angle between the
north vector and the observation direction vector of AMSR/AMSR-E at an observation point.
The definition is shown Fig 4.7.3-2. This data is calculated corresponding to the observation
points of 6GHz to 36GHz. This value is calculated for the representative point of the lower

frequency channels (e.g. latitudes and longitudes in “latlon_low_mean.”)

(4) ol_flag
“ol_flag” is a ratio of land area in the main beam footprint (3dB down beam width) and is
expressed on percentage. The data range is from 0 to 100, in abnormal case, data is set to 255.

There are 196 stored points in a scan, and these data corresponds to the footprints of 6GHz,

10GHz, 18GHz, 23GHz, 36GHz, 50GHz, and 89GHz-A.

4-16

Perpendicular Vector from
the surface(p)

Specular reflected Vect
AMSR Viewing Vector(v)

Sun Elevation = 6 2— 6 1(81,8 2: Absolute Value)

Sun Azimuth = ¢
(if sun is v X p positive side ; +
negative side ; -)

Fig 4.7.3-1 Definition of Sun Elevation/Azimuth

North

Farth Azimuth angle

normal vector of surface S
north vecto

S Earth incidence angle
AMSR viewing vector

~
projected vector of

AMSR viewing vector

S: tangent surface of observation point

Q: observation point

Fig 4.7.3-2 Definition of Earth Azimuth/Incidence

4-17

4.3.4 STATUS_L1B (for L1B)

Table 4.3.4-1 STATUS_L1B

Name of b & . D i
structure member ype size escription
STATUS_L1B pos_orbit 8byte real 1{Orbit No.
obs_supple unsigned 27|Observation supplement data
2byte int Dimension: n supplement kind

Contents of this array are defined as in
Table 4.3.4-2.

gpsr 2byte int 1{Check value of the GPSR count
(0:0K,1:NG)
The checking conclusion of GPSR count In
the case that the difference of GPSR in
before scan and after scan is not satisfied
1.5 + 1.0sec or -6.5 + 1.0sec, this flag will
be 1.

hts 2byte int 1{Check value of the HTS count
(0:0K,1:NG)
The checking conclusion of HTS
temperature. In the case that the
difference of HTS temperature in before
scan and after scan is not satisfied within
0.5°, this flag will be set 1.

moon_azimuth 4byte real 1|{Moon azimuth [deg]
The moon direction from Cold Sky Mirror
(See Fig 4.3.4-1)

sun_azimuth 4byte real 1{Sun azimuth [deg]
The sun direction from Cold Sky Mirror,
(See Fig 4.3.4-1)

tacopulse 4byte real 1|Taco pulse count [count]
The average data of Taco pulse count in a
product

quality 4byte real 16 x 4|Statistic values of calibration data

Dimension: n channel x n statistic value
For AMSR-E, 50GHz vertical and 52GHz
vertical element are set to 0.0.

Variable numbers are defined as follows.
(for n channel)

1: 6GHz vertical elements

2: 6GHz horizontal elements

3: 10GHz vertical elements

4: 10GHz horizontal elements

5: 18GHz vertical elements

6: 18GHz horizontal elements

7: 23GHz vertical elements

8: 23GHz horizontal elements

9: 36GHz vertical elements

10: 36GHz horizontal elements

11: 50GHz vertical elements

12: 52GHz vertical elements

13: 89GHz A-horn vertical elements

14: 89GHz A-horn horizontal elements

15: 89GHz B-horn vertical elements

16: 89GHz B-horn horizontal elements
Variable numbers are defined as follows.
(for n statistic value)

4-18

1: Cold Sky Mirror Count mean value
[count]

2: Hot-load Count mean value [count]

3! Cold Sky Mirror Count root mean
square [count]

4: Hot-load Count root mean square
[count]

(1) pos_orbit

This data expresses the scanning position in an orbit and is stored in every scan.

Example: The value of “pos_orbit” 100.5 denotes the middle point between orbit number

100. and 101.

(2) obs_supple

“obs_supple” is included in AMSR and AMSR-E telemetry data. This data is stored in every
scan. The details of this data are shown in the Table 4.3.4-2.

(3) quality

“quality” is statistic values of calibration data about Cold Sky Mirror Count and Hot-load

Count for AMSR and AMSR-E data in every scan. This statistic data contains mean value

and root mean square value in unit [count].

Radiation
from Deep

Space(2.7K) |

<Y

1Y)
4iH

A D>

Sun direction
CSM

‘ View
Vector

Moon direction

)

Fig 4.3.4-1 Definition of Sun/Moon direction

Table 4.3.4-2 “obs_supple” data table

Observation
supplements Description
array NO.

1 GPSR (Global Positioning System Receiver) count
2 Taco pulse count #1
3 Taco pulse count #2
4 Taco pulse count #3
5 Taco pulse count #4
6 Taco pulse count #5
7 SPC (Signal Processor Control Unit) ON/OFF #1
8 SPC (Signal Processor Control Unit) ON/OFF #2
9 SPC (Signal Processor Control Unit) operation flag
10 SPC (Signal Processor Control Unit) error flag #1
11 SPC (Signal Processor Control Unit) error flag #2
12 SPC (Signal Processor Control Unit) error flag #3
13 SPC (Signal Processor Control Unit) error flag #4
14 Redundancy Switching Control #1
15 Redundancy Switching Control #2
16 SPS(Signal Processor Sensor Unit) ON/OFF #1
17 SPS(Signal Processor Sensor Unit) ON/OFF #2
18 SPS(Signal Processor Sensor Unit) ON/OFF #3
19 SPS(Signal Processor Sensor Unit) ON/OFF #4
20 SPS(Signal Processor Sensor Unit) operation mode
21 RX AGC (Auto Gain Control)/MGC (Manual Gain Control) mode #1
22 RX AGC (Auto Gain Control)/MGC (Manual Gain Control) mode #2
23 SPS(Signal Processor Sensor Unit) operation flag
24 SPS(Signal Processor Sensor Unit) error flag #1
25 SPS(Signal Processor Sensor Unit) error flag #2
26 SPS(Signal Processor Sensor Unit) error flag #3
27 SPS(Signal Processor Sensor Unit) error flag #4

4.3.5 CAL (for L1B)

Table 4.3.5-1 CAL

Name of member type size Description
structure yp P
CAL ahotload_low 2byte int 12 x 8|Hot-load count for lower frequency

channels .(AMSR)

SRR

4-20

Dimension: n channel x n pixel
Variable numbers are defined as follows.

: 6GHz vertical elements data [count]

: 6GHz horizontal elements data [count]

: 10GHz vertical elements data [count]

: 10GHz horizontal elements data [count]

: 18GHz vertical elements data [count]

: 18GHz horizontal elements data [count]

: 23GHz vertical elements data [count]

: 23GHz horizontal elements data [count]
9: 36GHz vertical elements data [count]

10: 36GHz horizontal elements data [count]
11: 50GHz vertical elements data [count]

12: 52GHz vertical elements data [count]

ahotload_high_A

2byte int

2x 16

Hot-load count for 89GHZ channels A-scan
(AMSR)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz A-horn vertical elements data [count]

2: 89GHz A-horn horizontal elements data [count]

ahotload_high_B

2byte int

2x 16

Hot-load count for 89GHZ channels B-scan
(AMSR)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz B-horn vertical elements data [count]

2: 89GHz B-horn horizontal elements data [count]

acoldsky_low

2byte int

12x 8

Cold sky mirror count for lower frequency
channels (AMSR)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

: 6GHz vertical elements data [count]

: 6GHz horizontal elements data [count]

: 10GHz vertical elements data [count]

: 10GHz horizontal elements data [count]
18GHz vertical elements data [count]

: 18GHz horizontal elements data [count]

: 23GHz vertical elements data [count]

: 23GHz horizontal elements data [count]
9: 36GHz vertical elements data [count]

10: 36GHz horizontal elements data [count]
11: 50GHz vertical elements data [count]
12: 52GHz vertical elements data [count]

R

acoldsky_high_A

2byte int

2x 16

Cold sky mirror count for 89GHZ channels A-scan
(AMSR)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz A-horn vertical elements data [count]

2: 89GHz A-horn horizontal elements data [count]

acoldsky_high_B

2byte int

2x 16

Cold sky mirror count for 89GHZ channels B-scan
(AMSR)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz B-horn vertical elements data [count]

2: 89GHz B-horn horizontal elements data [count]

ehotload_low

2byte int

12x 16

Hot-load count for lower frequency channels
(AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows. AMSR-E
data does not have 50GHz and 52GHz frequency
bands, therefore these two band data are set to
zeroin every scan and pixel.

: 6GHz vertical elements data [count]

: 6GHz horizontal elements data [count]

: 10GHz vertical elements data [count]

: 10GHz horizontal elements data [count]

: 18GHz vertical elements data [count]

: 18GHz horizontal elements data [count]

: 23GHz vertical elements data [count]

: 23GHz horizontal elements data [count]

9: 36GHz vertical elements data [count]

10: 36GHz horizontal elements data [count]

11: 50GHz vertical elements data [count]

12: 52GHz vertical elements data [count]

R

4-21

ehotload_high_A

2byte int

2x 32

Hot-load count for 89GHZ channels A-scan
(AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz A-horn vertical elements data [count]

2: 89GHz A-horn horizontal elements data [count]

ehotload_high_B

2byte int

2x 32

Hot-load count for 89GHZ channels B-scan
(AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz B-horn vertical elements data [count]

2: 89GHz B-horn horizontal elements data [count]

ecoldsky_low

2byte int

12x 16

Cold sky mirror count for lower frequency
channels (AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows. AMSR-E
does not have 50GHz and 52GHz frequency
bands, therefore these two band data are set to
zeroin every scan and pixel.

: 6GHz vertical elements data [count]

: 6GHz horizontal elements data [count]

: 10GHz vertical elements data [count]

: 10GHz horizontal elements data [count]

18GHz vertical elements data [count]

: 18GHz horizontal elements data [count]

: 23GHz vertical elements data [count]

: 23GHz horizontal elements data [count]

9: 36GHz vertical elements data [count]

10: 36GHz horizontal elements data [count]

11: 50GHz vertical elements data [count]

12: 52GHz vertical elements data [count]

R

ecoldsky_high_A

2byte int

2x 32

Cold sky mirror count for 89GHZ channels A-scan
(AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz A-horn vertical elements data [count]

2: 89GHz A-horn horizontal elements data [count]

ecoldsky_high_B

2byte int

2x 32

Cold sky mirror count for 89GHZ channels B-scan
(AMSR-E)

Dimension: n channel x n pixel

Variable numbers are defined as follows.

1: 89GHz B-horn vertical elements data [count]

2: 89GHz B-horn horizontal elements data [count]

ant_temp_coef

4byte real

32

Antenna Temperature Coefficient for every
channel in a scan

Dimension: n channel offset/gain

Variables are listed in Table 4.3.5-4.

The unit of gain is [K/count] and the unit of offset
is [Kl.

offset_gain

unsigned
2byte int

32

Rx Offset/Gain Count for every channel in a scan
Dimension: n channel offset/gain

Variables are listed in Table 4.3.5-1. Unit is
[count].

SPC_temp_cnt

2byte int

20

Temperature counts of Signal processor control
unit

array style n kind

Variables are listed in Table 4.3.5-5. Unit is
[count].

SPS_temp_cnt

2byte int

32

Temperature counts of Signal processor sensor
unit

4-22

array style n kind

Variable is defined as Table 4.3.5-6. Unit is
[count].

SPC_temp_calc [8byte real 20|(Temperature of Signal processor control unit
calculated from “SPC_temp_cnt.”

Variables are listed in Table 4.3.5-5. Unit is [°C].
SPS_temp_calc [8byte real 32|Temperature of Signal processor sensor unit
calculated from “SPS_temp_cnt.”

Variables are listed in Table 4.3.5-6. Unit is [°C].

(1) alelhotload_low, alelhotload_high_A[B]

There are 8 (AMSR) or 16 (AMSR-E) points in one scan for lower frequency channels and
16 (AMSR) or 32 (AMSR-E) points in one scan for 89GHz channels. Hot-load count data are
observed digital counts of the High Temperature nose Source (HTS, e.g., hot load) in a scan.

If you use AMSR L1B, ADIT uses automatically the members of “acoldsky_low,”
“ahotload_high_A,” and “ahotload_high_B.” In using AMSR-E L1B, ADIT uses automatically
the members of “ehotload_low,” “ehotload_high_A” and “ehotload_high_B”. The meaning of

each lower frequency channel element’s value is shown in Table 4.3.5-2.

Table 4.3.5-2 Hot-load counts data value

value of data meaning of data value
positive normal data
negative questionable data
-32768 parity error data
0 missing packet data

(2) alelcoldsky_low, alelcoldsky_high_A[B]

There are 8 (AMSR) or 16 (AMSR-E) points in one scan for lower frequency channels and
16 (AMSR) or 32 (AMSR-E) points in one scan for 89GHz channels. Cold Sky Mirror Count
data are observed digital counts of Deep space (Cosmic Microwave Background) using the
Clod Sky Mirror in a scan.

If you use AMSR L1B, ADIT uses automatically the members of “acoldsky_low,”
“acoldsky_high_A“ and “acoldsky_high_B.” In using AMSR-E L1B, ADIT uses automatically
the members of “ecoldsky_low,” “ecoldsky_high_A” and “ecoldsky_high_B.” The meaning of

each lower frequency channel element’s value is shown in Table 4.3.5-3.

Table 4.3.5-3 Cold sky mirror counts data value

value of data meaning of data value
positive questionable data
negative normal data
32767 parity error data
0 missing packet data

4-23

(3) ant_temp_coef
“ant_temp_coef” is the coefficient for converting from observation counts to antenna
temperature. The coefficients are the slope and offset for every frequency and polarization

channel, and are stored in every scan. This data array is defined in Table 4.3.5-4.

(4) offset_gain

“offset_gain” is the receiver offset/gain data measured every scan. This data array is defined

in Table 4.3.5-4.

(5) SPC_temp_cnt, SPC_temp_calc
“SPC_temp_cnt” is the temperature count data of the signal-processor control unit. The
“SPC_temp_calc” is calculated physical temperatures from “SPC_temp_cnt.” Contents of this

data are listed in Table 4.3.5-5.

(6) SPS_temp_cnt,SPS_temp_calc
“SPS_temp_cnt” is the temperature count data of the signal-processor sensor unit. The

“SPS_temp_calc” is calculated value from “SPS_temp_cnt.” Contents of this data are listed in

Table 4.3.5-6.

Table 4.3.5-4” ant_temp_coef”/” offset_gain” data table

Variable No. of Description
n channel offsetgain
1 6GHz vertical elements of offset
2 6GHz vertical elements of gain [slopel
3 6GHz horizontal elements of offset
4 6GHz horizontal elements of gain [slope]
5 10GHz vertical elements of offset
6 10GHz vertical elements of gain [slope]
7 10GHz horizontal elements of offset
8 10GHz horizontal elements of gain [slopel
9 18GHz vertical elements of offset
10 18GHz vertical elements of gain [slope]
11 18GHz horizontal elements of offset
12 18GHz horizontal elements of gain [slopel
13 23GHz vertical elements of offset
14 23GHz vertical elements of gain [slope]
15 23GHz horizontal elements of offset
16 23GHz horizontal elements of gain [slope]
17 36GHz vertical elements of offset
18 36GHz vertical elements of gain [slope]
19 36GHz horizontal elements of offset
20 36GHz horizontal elements of gain [slopel
21 50GHz vertical elements of offset
22 50GHz vertical elements of gain [slope]
23 52GHz vertical elements of offset

4-24

24 52GHz vertical elements of gain [slope]

25 89GHz A-horn vertical elements of offset

26 89GHz A-horn vertical elements of gain [slope]
27 89GHz A-horn horizontal elements of offset

28 89GHz A-horn horizontal elements of gain [slopel
29 89GHz B-horn vertical elements of offset

30 89GHz B-horn vertical elements of gain [slopel
31 89GHz B-horn horizontal elements of offset

32 89GHz B-horn horizontal elements of gain [slopel

Table 4.3.5-5 ”SPC_temp_cnt”/’SPC_temp_calc” data table

Variable No.

of n kind Description
1 Thermistor #1 SPC A temperature
2 Thermistor #2 SPC B temperature
3 Thermistor #3 TCC temperature
4 Thermistor #4 PDUC temperature
5 Thermistor #5 ADASTATOR temperature
6 Thermistor #7 MWA Wheel temperature
7 Thermistor #8 MWA Bearing temperature
8 Thermistor #9 ADE temperature
9 Thermistor #11 Control STR temperature
10 Thermistor #12 Control STR temperature
11 Thermistor #13 Control STR temperature
12 Thermistor #14 Control STR temperature
13 Platinum sensor #1 HTS temperature 1
14 Platinum sensor #2 HTS temperature 2
15 Platinum sensor #3 HTS temperature 3
16 Platinum sensor #4 HTS temperature 4
17 Platinum sensor # HTS temperature 5
18 Platinum sensor #6 HTS temperature 6
19 Platinum sensor #7 HTS temperature 7
20 Platinum sensor #8 HTS temperature 8

Table 4.3.5-6 ”"SPS_temp_cnt’/’SPS_temp_calc” data table

n kind variable No.

Description

1 Thermistor #1 SPS temperature

2 Thermistor #2 PUDC temperature

3 Thermistor #3 TCS temperature

4 Thermistor #4 DC/DC RX 1 temperature
5 Thermistor #5 DC/DC RX 2 temperature
6 Thermistor #6 6G LNA temperature

7 Thermistor #7 10G LNA temperature

8 Thermistor #8 50G LNA temperature

9 Thermistor #9 89G H LNA1 temperature
10 Thermistor #10 89G H LNA2 temperature
11 Thermistor #11 89G V LNA1 temperature
12 Thermistor #12 89G V LNA2 temperature
13 Thermistor #13 Sensor STR3 temperature
14 Thermistor #14 Control STR4 temperature
15 Thermistor #15 ADA ROT A temperature
16 Thermistor #16 ADA ROT B temperature
17 Platinum sensor #1 6G RX temperature
18 Platinum sensor #2 10G RX temperature

4-25

19 Platinum sensor #3 18G RX temperature

20 Platinum sensor #4 23G RX temperature

21 Platinum sensor # 36G RX temperature

22 Platinum sensor # 50G RX temperature

23 Platinum sensor #7 89G RX1 temperature

24 Platinum sensor #8 89G RX2 temperature

25 Platinum sensor #9 MREF 1 temperature

26 Platinum sensor #10 MREF 2 temperature

27 Platinum sensor #11 MREF 3 temperature

28 Platinum sensor #12 MREF 4 temperature

29 Platinum sensor #13 FEED 1 temperature

30 Platinum sensor #14 FEED 2 temperature

31 Platinum sensor #15 sensor STR1 temperature
32 Platinum sensor #16 sensor STR2 temperature

4.3.6 NAVI (for L1B)

“NAVI” is the structure of the navigation data of the platform. The structure is defined in
Table 4.3.6-1.
Table 4.3.6-1 NAVI

sTfuI::lfu(])ri member type size Description

NAVI posX 4byte real 1|platform position in X coordinate [m]
posY 4byte real 1|platform position in Y coordinate [ml]
posZ 4byte real 1|platform position in Z coordinate [m]
velX 4byte real 1|platform velocity in X coordinate [m/s]
velY 4byte real 1|platform velocity in Y coordinate [m/s]
velZ 4byte real 1|platform velocity in Z coordinate [m/s]
roll 4byte real 1|platform attitude of roll angle [deg]
pitch 4byte real 1|platform attitude of pitch angle [deg]
yaw 4byte real 1|platform attitude of yaw angle [deg]

(1) NAVI

The structure “NAVI” contains position, velocity and attitude data of the platform. Position
and velocity data are expressed in an inertia co-ordinate system and stored corresponding to
the structure “SCAN_TIME.” The unit of position (“posX,” “posY,” “posZ”) is [ml], and velocity
(“velX,” “velY,”,“velZ”) is [m/s]. Three kinds of navigation data are used to acquire position
data and velocity data, GPS, ELMD and ELMP. Metadata (attribute name is
“EphemerisType”) specifies which data is stored.

Attitude data (“roll,” “pitch,” “yaw”) have units of [degl. The value “roll” is the direction of
flight, “yaw” is the direction of the nadir, and “pitch” is the direction of “yaw” x “Roll.”

Table 4.3.6-2 Navigation data value table

value of data meaning of data value
except -9999 normal data
-9999 missing packet data

4-26

4.3.7 AMSRL2_SWATH (for 1.2)

Table 4.3.7-1 AMSRL2_SWATH

Name of structure | member type size Description
AMSRL2 SWATH scan_time SCAN_TIME 20|Structure of SCAN _TIME
geophys 4byte real 3 x 196|Geophysical data in a scan.

Dimension: n rank x n pixel

follows.

1: geophysical data
2! depends on PI

3: depends on PI

Variable numbers are defined as

latlon_low |4byte real 2 x 196|Geolocation of the observation mean
point for lower channels (simple mean
value)
Dimension: n geolocation variable x n
pixel.

follows.
1: latitude [deg]
2: longitude [deg]

(1) scan_time
“scan_time” is the structure “SCAN_TIME.”

(2) geophys
“geophys” 1s the geophysical data in a scan. There are several kinds of geophysical

parameters. (See Table 4.3.7-2.)

Table 4.3.7-2 Geophysical quantity parameters and L2 product code

hvsical ¢ duct cod "+ maximum minimum
geophysical parameters | product code | uni value value
Water Vapor WVO0 kg/m? 0 70
Cloud Liquid Water CLW kg/m? 0 1.0
Amount of Precipitation APO mm/h 0 100
Sea Surface Wind SSW m/s 0 30
Sea Surface Temperature SST °C -2 35
Ice Concentration 1CO % 0 100
Soil Moisture SMO g/em3 0 To be defined
Snow Water Equivalence SWE mm 0 10000

(3) latlon_low

“latlon_low” includes the latitude and longitude of the representative observation point for
lower frequency channels in a scan. There are 196 points in a scan. The “latlon_low” has
units of [deg]. The latitude ranges from —90 to 90, positive value is north latitude, and

negative value is south latitude. The longitude ranges from —180 to 180. (See Table 4.3.2-2

4-27

Variable numbers are defined as

and Table 4.3.2-3.)

4.3.8 STATUS_ L2 (for 1.2)

Table 4.3.8-1 STATUS_L2

Name of . ..
struct member type size Description
STATUS_L2 [pos_orbit |4byte real 1|Orbit No.
quality 1byte int 3x 196 x 8|Quality flag corresponding to each point of]

geophysical quantity data.

Dimension: n rank x n pixel n bit-position
Variable numbers of n rank are defined as
follows.

1: geophysical data quality flag

2: depends on PID

3: depends on PI¢D

Variable numbers of n bit-position are shown
in Table 4.3.8-2.

(1) pos_orbit

(*1) PI: Proposal Instructor

This data express the scanning position in an orbit and is stored every scan.

Example: “pos_orbit” 100.5 denotes the middle point between orbit number 100. and 101.

(2) quality

“quality” is the quality flag for L2 data in every scan. (See Table 4.3.8-2.)

4-28

63-¥

Table 4.3.8-2 Quality Flag in detail

Data Bit position
7 6 9 4 3 2 1 0
wv Land/coast Abnormal Sea ice Abnormal Abnormal Cloud Rainfall Low precision
brightness supplementary-se |calculation of
temperature a_surface sea_surface
temperature-wind |emissivity
at
sea-temperature
of 850hPa
CLW IRETX(2) means [ISUR2 means |ICE means seallOOB(2) means |Unused Unused Unused Unused
no retrieval was |land contamination |ice TB OOB
done
AP Tb OK/Bad Tb |no rain/light rain |no rain/heavier |retrieval done/no |Unused Unused Unused Unused
rain retrieval
SSW Land area Sea ice Sun glitter Rain no data of wé in |incident angle abnormal wind not used
correcting wind |error speed
direction
SST Land area Seaq ice Sun glitter Rain Wind Incident angle Abnormal SST Not enough
number for
average 1B
IC No calculation took|Invalid brightness |Land location Latitude is out of |Pixel is out of sea [High SST Unused Unused

place

tfemperature

ice range

areda

0€-¥

Data

Bit position

7 | 6

SWE

0:No snow (normal retrieval)
1:Water

2:Snow impossible

3:Permanent ice

4:Surface temperature too warm
5Heavy forest

6:Mountainous region

7:Rain

8:Wet snow

9:Dry snow (currently unused)
10:Wet soil

11:Dry soil (currently unused)
12:Tb out of range

13:Snow possible

14:Satellite attitude out of range *
15:Missing Th values *

SM

Unused

4.3.9 L3 Science data

There is no structure defined in ADIT for L.3. But ADIT provides L3 science data as a 4byte

real data, whose size is corresponding to geophysical parameters and map projection type.

(See Table 4.3.9-1.)

Table 4.3.9-1 L3 science data size

geophysical parameters product code map projection type size unit
line x pixel
Brightness Temperature TB Equirectangular 721 x 1440 K
Polar stereo in the northern 448 x 304
hemisphere
Polar stereo in the southern 332 x 316
hemisphere
Water Vapor WVo0 Equirectangular 721 x 1440 kg/m?
Cloud Liquid Water CLW Equirectangular 721 x 1440 kg/m?
Amount of Precipitation APO Equirectangular 721 x 1440 mm/h
Sea Surface Wind SSW Equirectangular 721 x 1440 m/s
Sea Surface Temperature SST Equirectangular 721 x 1440 °C
Ice Concentration I1Co Polar stereo in the northern 448 x 304 %
hemisphere
Polar stereo in the southern 332 x 316
hemisphere
Soil Moisture SMO Equirectangular 721 x 1440 g/cm?
Snow Water Equivalence SWE Equirectangular 721 x 1440 cm
Polar stereo in the southern 573 x 431 mm
hemisphere

4-31

4.4 Metadata
4.4.1 L1B Metadata
Table 4.4.1-1 L1B Metadata
mitlz(iita metadata name Description metadata values (example)
0 ShortName product name AMSR-L1B
1 VersionID product version ID RELEASE1
2 SizeMBECSDataGranule product size (MB) 29.6
3 LocalGranuleID Local Granule ID A2AMS01091857MD_P01B0000000
4 ProcessingLevelID Processing Level ID L1B
5 ReprocessingActual Reprocessing Actual (UTC) 1998-02-20
6 ProductionDateTime Production Date Time (UTC) 1998-02-04-T00:00:00.00Z
7 RangeBeginningTime Range Beginning Time (UTC) 00:00:00.00Z
8 RangeBeginningDate Range Beginning Date (UTC) 1998-02-04
9 RangeEndingTime Range Ending Time (UTC) 01:00:00.00Z
10 RangeEndingDate Range Ending Date (UTC) 1998-02-04
11 GringPointLatitude Gring Point of Latitude 09%8’090'0’ 90.0,-90.0,-90.0,-90.0,-90.
. -180.0,-180.0,-180.0,-180.0,-180.0,-18
12 GringPointLongitude Gring Point of Longitude 0.0,-180.0,-180.0
13 PGEName Name of L1B Process Software L1B_Process_Software
14 PGEVersion Version of L1B Process Software 3222222***11111*11
15 InputPointer Inputted file name A2AMS01091857MD_P01A0000000
16 ProcessingCenter Data Processing Center NASDA EOC
NASDA,1401 OHASHI
. . HATOYAMA-MACHI,HIKI-GUN,SA
17 ContactOrganizationName |Contact Organization Name ITAMA,350-0393 JAPAN +81-492-98
-1307,orderdesk@eoc.nasda.go.jp
18 StartOrbitNumber Start Orbit Number 100
19 StopOrbitNumber Stop Orbit Number 100
20 EquatorCrossinglongitude |Equator Crossing Longitude -176.47
21 EquatorCrossingDate Equator Crossing Date 2001-09-08
22 EquatorCrossingTime Equator Crossing Time 23:01:21.87Z
23 OrbitDirection Orbit Direction DESCENDING or ACENDING
24 EphemerisGranulePointer |Ephemeris Granule Pointer EL20010918
25 EphemerisType Ephemeris Type GPS
26 PlatformShortName Platform Short Name ADEOS-2 or EOS-PM1
27 SensorShortName Sensor Short Name AMSR or AMSR-E
28 NumberofScans Number of Scan 834
29 NumberofMissingScans Number of Missing Scan 0
30 ECSDataModel ECS Data Model(hame of metadata B.O
model)
DiscontinuityVirtualChanne |Virtual channel Unit Counter| . . .
31 . L. Discontinuation
1Counter Discontinuity
32 ﬁ)ﬁ;ocatlonPacket Discontin Packet Sequence Counter Discontinuity [Continuation
33 NumberofPackets Number of Packets of L.O data 13344
34 NumberofInputFiles Number of Input LO Files 1
35 NumberMissingPackets Number Missing Packets 0
36 NumberofGoodPackets Number of Good Packets 13344
37 ReceivingCondition Receiving Condition Blank
38 EphemerisQA Ephemeris limit check OK
39 AutomaticQAFlag Automatic QA Flag check PASS
1.MissingDataQA:Less than 1010 is
available->0K,
2.AntennaRotationQA:Less than 20
40 AutomaticQAFlagExplanati Automatic QA Flag Explanation is available->O0K,

on

3.HotCalibrationSourceQA:Less
than 20 is available->0K,
4.AttitudeDataQA:Less than 20 is
available->OK,

4-32

Table 4.4.1-1 L1B Metadata

m?ﬁiiita metadata name Description metadata values (example)

5.EphemerisDataQA:Less than 20 is
available->OK,
6.QualityofGeometricInformationQA:
Less than 0 is available->OK,
7.BrightnessTemperatureQA:Less
than 20 is available->0K,
All items are OK, 'PASS' is employed

41 ScienceQualityFlag Science Data calculation Quality Flag |Blank

49 ScienceQualityFlagExplanat Scienge . Data calculation Quality Blank

ion Description

43 QAPercentMisssingData QA Percent of Misssing Data 0

44 gAPercentOutofBoundsDat QA Percent Out of Bounds Data 0

45 QAPercentParityErrorData g::;ber of QA Percent Parity Error 0

46 ProcessingQADescription Processing QA Description PROC_COMP

47 ProcessingQAAttirbute Processing QA Attribute Name Automatic QA Flag etc

48 SatelliteOrbit Satellite Orbit Sun-synchronous_sub-recurrent

49 Altitude Satellite Altitude 802.9km

50 OrbitSemiMajorAxis Satellite Orbit Semi Major Axis 7181.317km

51 OrbitEccentricity Satellite Orbit Eccentricity 0.00007

52 OrbitArgumentPerigee Satellite Orbit Argument Perigee 244.018deg

53 OrbitInclination Satellite Orbit Inclination 98.62deg

54 OrbitPeriod Satellite Orbit Period 101minutes

55 RevisitTime Revisit Time 4days
6.925GHz,10.65GHz,18.7GHz,23.8G

56 AMSR/AMSR-EChannel AMSR/AMSR-E Channel Hz,36.5GHz,50.3GHz,52.8GHz,89.0G
Hz-A,89.0GHz-B
6G-350MHz,10G-100MHz,18G-200M

57 |AMSR/AMSR-EBandWidth |AMSR/AMSR-E Band Width El?é?)%(ﬁﬁ(%El-zﬁgﬁéofgggﬁi%g
MHz,89GB-3000MHz
6G-1.8deg,10G-1.2deg,18G-0.64deg,2

58 |AMSR/AMSR-EBeamWidth |AMSR/AMSR-E Beam Width i’g;;é‘f’g;%iggé%éfﬁg?iz%j:égé?
0.15deg

59 OffNadir Angle of offnadir 46.7deg : for 89GB 46.3deg
6G-39.8kmX69.5km,10G-26.6kmX46.
3km,18G-14.4kmX25.1km,23G-16.6k

. . . . mX28.9km,36G-7.7kmX13.5km,50.3

60 SpatialResolution(AzXEI) Spatial Resolution G-5.5kmX9.6km,52G-5.5kmX9.6km.8
9GA-3.3kmX5.8km,89GB-3.3kmX5.7
km

61 ScanningPeriod Scanning Period 1.5sec

62 SwathWidth Swath Width 1600km

63 DynamicRange Dynamic Range 2.7K-340K

64 DataFormatType Data Format Type NCSA-HDF

65 HDFFormatVersion HDF Format Version Ver4.1r2

66 EllipsoidName Ellipsoid Model Name WGS84

67 SemiMajorAxisofEarth Semi Major Axis of Earth 6378.1km

68 FlatteningRatioofEarth Flattening Ratio of Earth 0.00335

69 SensorAlignment Sensor Alignment Rx=0.00000,Ry=0.00000,Rz=0.00000

. . 61,138,301,456,591,698,780,840,883,

70 ThermistorCountRangeWx |Thermistor Count Adaptable Range Wx 915.937.954.966.974,1024

71 \T);;ermlstorConversmnTable Thermistor Conversion Table Wa f)df)df)d’()df)df)df)d’()d-odo,0.0,0.0,0.0,0.0,0.0,0
0.00000,0.06494,0.06135,0.06452,0.0

ThermistorConversionTable . . 7407,0.09346,0.12195,0.16667,0.23

2w Thermistor Conversion Table Wb 256,0.31250,0.45455,0.58824,0.83333
,1.25000,0.00000

73 ThermistorConversionTable |Thermistor Conversion Table We -35.0000,-38.9610,-38.4663,-39.4194,-

4-33

Table 4.4.1-1 L1B Metadata

metadata
index

metadata name

Description

metadata values (example)

We

43.7778,-55.2336,-75.1220,-110.0000,
-165.3488,-235.9375,-365.9091,-491.1
765,-725.0000,-1127.5000,90.0000

ThermistorConversionTable

0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

74 Wd Thermistor Conversion Table Wd 0.0.0,0.0,0.0,0.0
1168,1296,1536,1792,2032,2272,2512
75 Platinum#1CountRangeWx [Platinum#1 Count Adaptable Range Wx |,2752,2992,3232,3472,3712,3952,4
096
76 Platinum#1ConversionTable Platinum#1 Conversion Table Wa 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
Wa .0,0.0,0.0,0.0
0.00000,0.03906,0.04167,0.03906,0.0
Platinum#1ConversionTable . . 4167,0.04167,0.04167,0.04167,0.04
T wp Platinum#1 Conversion Table Wb 167,0.04167,0.04167,0.04167,0.04167
,0.04167
-35.0000,-80.6250,-84.0000,-80.0000,-
Platinum#1ConversionTable . . 84.6667,-84.6667,-84.6667,-84.6667,-
we Platinum#1 Conversion Table We 84.6667,-55.5000,-84.6667,-84.6667,-
84.6667,-84.6667
79 |Platinum#lConversionTable |y o\ st Conversion Table Wd 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
wd
.0,0.0,0.0,0.0
272,528,784,1040,1296,1536,1792,20
80 Platinum#2CountRangeWx [Platinum#2 Count Adaptable Range Wx [32,2288,2528,2768,3008,3248,3472,3
712,4096
81 %:tmum#zconversmﬂable Platinum#2 Conversion Table Wa 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0
0.00000,0.07813,0.07813,0.07813,0.0
Platinum#2ConversionTable . . 7813,0.08333,0.07813,0.08333,0.0781
82 wp Platinum#?2 Conversion Table Wb 3,0.08333,0.08333,0.08333,0.08333,0.
08929,0.08333,0.00000
-140.0000,-161.2500,-161.2500,-161.2
Platinum#2ConversionTable)) 500,-161.2500,-168.0000,-160.0000,-1
83 We Platinum#2 Conversion Table We 69.3333,-158.7500,-170.6667,-170.66
67,-170.6667,-170.6667,-190.0000,-16
9.3333,140.0000
84 5&3“““‘“#200“9“10“%“8 Platinum#2 Conversion Table Wd 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
.0,0.0,0.0,0.0,0.0,0.0
. . 368,704,1040,1360,1696,2032,2352,2
85 Platinum#3CountRangeWx [Platinum#3 Count Adaptable Range Wx 688.3008.3344.3664.4000,4096
ge [Platinum#3ConversionTable |p) o\ ss Conversion Table Wa 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
Wa
.0,0.0,0.0
Platinum#3ConversionTable)) 0.00000,0.00893,0.00893,0.00938,0.0
87 Wb Platinum#3 Conversion Table Wb 0893,0.00893,0.00938,0.00893,0.0093
8,0.00893,0.00938,0.00893,0.00000
Platinum#3ConversionTable)) 12.0000,8.7143,8.7143,8.2500,8.8571,
88 We Platinum#3 Conversion Table We 8.8571,7.9500,9.0000,7.8000,9.1429,7
.6500,9.2857,45.0000
89 Platinum#3ConversionTable Platinum#3 Conversion Table Wd 0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0
Wwd .0,0.0,0.0
fixed value
.. Brightness Temperature Coefficient 6G-1.000,10G-1.000,18G-1.000,23G-1
90 CoefficientAvv Avy .000,36G-1.000,50G-1.000,89GA-1.00
0,89GB-1.000
. Brightness Temperature Coefficient 6G-0.000,10G:-0.000,18G-0.000,23G-0
91 CoefiicientAhv Ahv .000,36G-0.000,50G-0.000,89GA-0.00
0,89GB-0.000
.. Brightness Temperature Coefficient 6G-0.000,10G-0.000,18G-0.000,23G-0
92 CoefficientAov .000,36G-0.000,50G-0.000,89GA-0.00

Aov

0,89GB-0.000

4-34

Table 4.4.1-1 L1B Metadata

m?ﬁiiita metadata name Description metadata values (example)
- Brightness Temperature Coefficient 6G-1.000,10G-1.000,18G-1.000,23G-1
93 CoefficientAhh Ahb .000,36G-1.000,52G-1.000,89GA-1.00
0,89GB-1.000
.. Brightness Temperature Coefficient 6G-0.000,10G-0.000,18G-0.000,23G-0
94 CoefficientAvh Avh .000,36G-0.000,52G-0.000,89GA-0.00
0,89GB-0.000
- Brightness Temperature Coefficient 6G-0.000,10G-0.000,18G-0.000,23G-0
95 CoefficientAoh Aoh .000,36G-0.000,52G-0.000,89GA-0.00
0,89GB-0.000
6GV-3.390,6GH-3.390,
10GV-3.040,10GH-3.040,
18GV-3.040,18GH-3.040,
96 CSM Temperature Temperature of Cosmic Microwave|23GV-3.040,23GH-3.040,
Background(CSB) on cold sky mirror 36GV-3.040,36GH-3.040,
50GV-3.040,52GV-3.040,
89GAV-3.040,89GAH-3.040,
89GBV-3.040,89GBH-3.040
6G-0.57534,10G-0.87671,18G-0.7260
. L 3,
97 CoRegistrationParameterAl |CoRegistrationParameterAl 23G-0.46575,36G-0.47945,50G-0.000

00

6G--0.23288,10G--0.17323,18G-0.068

98 CoRegistrationParameterA2 [CoRegistrationParameterA2 49,23G--0.19178,36G-0.00000,50G-0.
00000
99 CalibrationMethod The method name of HTS correction RxTemperatureReferenced,SplllOver,
MoonLightEffect
HTSCorrectionParameterVe |The version number of the parameter
100 - . . ver0001
rsion file used for HTS correction
. . The version number of the parameter
101 SpillOverParameterVersion |.. . . ver0001
file used for the spill over correction
. The version number of the parameter
102 %g%arameterv file used for eliminating moon light|ver0001
I effect on 10~89GHz CSM data
4.4.2 L2 Metadata
Table 4.4.2-1 1.2 Metadata
m(iertlzacelita metadata name Description metadata values (example)
0 ShortName Product name AMSR-L2
1 GeophysicalName Geophysical quantity name Water Vapor
2 VersionID ID of product version 0-255
3 SizeMBECSDataGranule Product size (Mbyte) 30(actual)
4 Local Granule ID Number for production management A2AMS020101001A_P2WV0Tak111
5 ProcessingLevellD ID of processing level L2
6 ProductionDateTime Time of production (UT) 2002-1-3-T00:00:00.00Z
7 RangeBeginningTime Time to start observing (UT) 00:00:00.00Z
8 RangeBeginningDate Date to start observing (UT) 2002-1-3
9 RangeEndingTime Time to end observing (UT) 01:00:00.00Z
10 RangeEndingDate Date to end observing (UT) 2002-1-3
11 GringPointLatitude Area of interest for latitude 90
12 GringPointLongitude Area of interest for longitude -180
13 PGEName Name of software (max 20 character)
14 PGEVersion Version of software (max 18 character)
15 PGEAlgorismDeveloper Name of algorism developer (max 20 character)
16 InputPointer Input file name A2AMS02010101MD_P01B00000000
00.00
17 ProcessingCenter Name of data processing center HATOYAMA
18 ContactOrganizationName |Organization name to contact about this| NASDA
product Address:

4-35

Table 4.4.2-1 L.2 Metadata

m?ﬁiiita metadata name Description metadata values (example)

OOAZA-OHASHI-AZA-NUMANOUE
HIKI-GUN
SAITAMA,JAPAN
Postal code : 350-0393
Telephone Number : 0492-98-1200
E-mail Address
abc@rd.tksc.nasda.go.jp
Instructions : 9:20(JST) - 17 (JST) is
the working time

19 StartOrbitNumber Start orbit number 100

20 StopOrbitNumber Stop orbit number 100

21 EquatorCrossinglongitude |Equator crossing latitude 89

22 EquatorCrossingDate Equator crossing date 1998.2.4

23 EquatorCrossingTime Equator crossing time 00:30:00Z

24 OrbitDirection Orbit direction DESCENDING

25 EphemerisGranulePointer |File name for using orbit EPHEMERIS-1

26 EphemerisType Type of using orbit GPS

27 PlatformShortName Abbreviated name of platform ADEOS-IT

28 SensorShortName Abbreviated name of observing sensor [AMSR

29 NumberofScan Number of scan 2020

30 ECSDataModel Name of meta data model B.0

DiscontinuityVirtualChanne

Discontinuity flag of virtual channel

Continuation/Discontinuation

31 .
1Counter unit counter
39 QALocationPacketDiscontin Discontinuity flag of packet sequence|Continuation/Discontinuation
uity counter
33 NumberofPackets Number of L0 packet 32320
34 NumberoflnputFiles Number of L0 file 1
35 NumberofMissingPackets Number of missing packet nnnn
36 NumberofGoodPackets Number of good packet nnnn
37 ReceivingCondition Condition for record or receive GOOD
38 EphemerisQA Result of limit check for ephemeris OK
39 AutomaticQAFlag Result by program check PASS
40 AutomaticQAFlagExplanati |Explanation of program check
on
a1 ScienceQualityFlag Flag .when it calculates geophysical|Blank for L1A,1L1B,L1BMap
quantity
49 ScienceQualityFlagExplanat |Explanation when it calculate |Blank for LL1A,LL1B,L.L1BMap
ion geophysical quantity
43 QAPercentMissingData Number of missing data nnn
44 QAPercentOutofBoundsData|Ratio of data out of bound nnn
4.4.3 L3 Metadata
Table 4.4.3-1 1.3 Metadata
m?;iiita metadata name Description metadata values (example)
0 Short Name Product name AMSR-L3
1 GeophysicalName Geophysical quantity name Water Vapor,
2 VersionID ID of product version 0-255
3 SizeMBECSDataGranule Product size (Mbyte) 30(actual)
4 Local Granule ID Number for production management A2AMS010101A_P3WV0Tak111E0
5 ProcessingLevelID ID of processing level L3
6 ProductionDateTime Time of production (UT) 2002-1-3-T00:00:00.00Z
7 RangeBeginningTime Time to start observing (UT) 00:00:00.00Z
8 RangeBeginningDate Date to start observing (UT) 2002-1-3
9 RangeEndingTime Time to end observing (UT) 01:00:00.00Z
10 RangeEndingDate Date to end observing (UT) 2002-1-3
1 InputPointer Name of algorism developer A2AMS02010101MD_P01B00000000

00.00

4-36

Table 4.4.3-1 LL3 Metadata

m?ﬁiiita metadata name Description metadata values (example)
12 StartOrbitNumber Start orbit number 100
13 StopOrbitNumber Stop orbit number 100
14 OrbitDirection Orbit direction DESCENDING
15 PlatformShortName Abbreviated name of platform ADEOS-II
16 SensorShortName Abbreviated name of observing sensor |AMSR
17 ECSDataModel Name of meta data model B.0
18 PGEName Name of software (max 20 character)
19 PGEVersion Version of software (max 18 character)
20 ProcessingCenter Name of data processing center HATOYAMA
21 ContactOrganizationName |Organization name to contact about this

product

4-37

5 Sample Program List

This chapter provides sample programs for outputting the value of data stored in L1B,
L2, and L3 products. Sample programs and data are stored in "sample" directory, which
is in the ADIT installation directory. Its structure is shown in Fig. 5-1. The way of
program compilation is shown in the header part of each source code (refer to Fig. 5-2).
More detail is described in Section 3.3.2 and Section 3.3.3.

An executable object file will be produced after the compilation according to the above.
Its name is extracted from the file name except its extension. It is different to invoke
the process for C and Fortran code.

[In the case of C program]
% Executable file nameAInput data name
/\ denotes blank.

e.g.)The following shows how to invoke the executable object file which is generated
from L1_swathlb.c. Suppose LI swathlb is an executable file name and
PIAME030609207MA_P01B0000000.00.sample is an input data name, it is shown as
below.

% L1_swathlb PIAME030609207MA_P01B0000000.00.sample

[In the case of Fortran program]

% Executable file name

* As an input data file name cannot be specified as a parameter for the execution of
Fortran program, it shall be specified as a statement in the codes.

e.g.)The following shows how to invoke the executable object file which is generated
from L1 _swathlb.f.

% L1 _swathlb

51

.2 [sample] +— D [readme.txt] (Explanation about sample program)
|—~—1| [C] (C sample program storing directory)
}—1_11 [Fortran] (Fortran sample program storing directory)

3 [Fortran_for_Linux]

| (Fortran sample program for linux storing directory)

LD [data] (Sample data storing directory)

Sample data is stored only when ADIT with sample data is downloaded.

Fig. 5-1 Directory Structure

%
This is a sample program to read AMSR/L1B data, and
following are instructions for compiling a sample program with ADIT.

For SGI
cc -DSGI —xansi —O —s —o L1_cal L1_cal.c ¥
~I$HDFINC -1../../include ¥
-L$HDFLIB -L../../lib ¥
~IADIT -Imfhdf -Idf [-lipeg] —Iz —Im

For SunOS The way of compilation for some typical
cc ~DSUN —Xc —x02 —Insl —o L1_cal L1_cal.c ¥
-I$HDFINC -I../../include ¥
~-L$HDFLIB -L../../lib ¥ each sample program.
~IADIT ~Imfhdf -Idf [-lipeg] ~Iz —Im

computers is described at the header part of

For HP-UX
cc ~DHP9000 —Ae —s —o L1_cal L1_cal.c ¥
-I$HDFINC -1../../include ¥
~-L$HDFLIB -L../../lib ¥
~IADIT —Imfhdf - df [-lipeg] —Iz ~Im

FOR DEC ALPHA
cc -DDEC_ALPHA —Olimit 2048 —std1 —o L1_cal L1_cal.c ¥
~I$HDFINC -1./../include ¥
~L$HDFLIB -L../../lib ¥
~IADIT —Imfhdf —Idf [-lipeg] ~Iz —Im

FOR LINUX
geec ~DLINUX -ansi —o L1_cal L1_cal.c ¥
~I$HDFINC -1../../include ¥
~L$HDFLIB -L../../lib ¥
~IADIT ~Imfhdf -Idf [-lipeg] —Iz ~Im

Note:
$HDFINC indicates the directory of included files of HDF liblary.
$HDFLIB indicates the directory of library files of HDF liblary.

/

Fig. 5-2 Description for compile

52

program main
include '"AMSR_f.n’

characterx46 fname

Specifying the inpyit data

ata fname/’ ../data/P1AME030609207MA_P01B0000000008=sample '/

teger status

integer I
integer sd_id

record /CAL/ cal

Fig. 5-3 Specifying the input data in Fortran program

Table 5-1 Sample program list

L1_cal.f (Fortran)

No. | Program file name Explanation
1. (read a scan) This code describes how to display the following data on
L1_swathlb.c (C) a screen. This is applicable for a L1B product.
L1_swath1b.f (Fortran) Scan_Time
(read a number of scans) Brightness_Temperature(6GHz-89GHz)
L1 swath1b line.c (C) Lat_of_Observation_Point_Except_89B
Ll_swath lb_line.f Long_of Observation_Point_Except_89B
(Fo_rtran) - Lat_of Observation_Point_for 89B
Long_of Observation_Point_for 89B
2. (read a scan) This code describes how to display the following data on
L1_sunearth.c (C) a screen. This is applicable for a L1B product.
L1_sunearth.f (Fortran) Sun_Azimuth
(read a number of scans) Sun_Eleva}tlon
L.1_sunearth_line.c (C) Earth_Ingldence
L1 sunearth line.f Earth_Azimuth
(Fortran) Land/Ocean_Flag_for_6_10_18_23_36_50_89A
3. (read a scan) This code describes how to display the following data on
L1_statuslb.c (C) a screen. This is applicable for a L1B product.
L1 _statuslb.f (Fortran) Position_in_Orbit
(read a number of scans) Data_Quality
L1 statuslb_line.c (C)
L1 _statuslb_line.f
(Fortran)
4. (read a scan) This code describes how to display the following data on
L1_cal.c (O) a screen. This is applicable for a L1B product.

Hot_Load_Count_6_to_ 52

5-3

Table 5-1 Sample program list

No. | Program file name Explanation
(read a number of scans) Hot_Load_Count_89
L1 _cal line.c (C) Cold_Sky_Mirror_Count_6_to_52
L1_cal line.f (Fortran) Cold_Sky_Mirror_Count_89

Antenna_Temp_Coef(Of+SI)
Rx_Offset/Gain_Count
SPC_Temperature_Count
SPS_Temperature_Count

5. (read a scan) This code describes how to display the following data on
L1_navi.c (C) a screen. This is applicable for a L1B product.
L1_navi.f (Fortran) Navigation_Data
(read a number of scans) Attitude Data
L1_navi line.c (C)

L1 _navi_line.f (Fortran)

6. (read a scan) This code describes how to display the following data on
L1_scantime.c (C) a screen. This is applicable for a L1B product.

L1 _scantime.f (Fortan) Scan_Time
(read a number of scans)
L1 _scantime line.c (C)
L1 _scantime_line.f
(Fortan)

7. L1_89GHz_low.c(C) This code describes how to display the following data on

L1_89GHz_ low.f(Fortran) | a screen. This is applicable for a L1B product.
- 89GHz lof frequency data

8. (read a scan) This code describes how to display the following data on
L2_swath2.c (C) a screen. This is applicable for a L2 product.
L2_swath2.f (Fortarn) Scan Time Table
(read a number of scans) Geophysical Quantity Data
L2_swath2_line.c (C) Lat. of observation point except 89B
L2_swath2_line.f Long. of observation point except 89B
(Fortarn)

9. (read a scan) This code describes how to display the following data on
L2_status2.c (C) a screen. This is applicable for a L2 product.
L2_status2.f (Fortran) Position_in_Orbit

Data Quality
(read a number of scans)
1.2_status2_line.c (C)
L2 status2_line.f
(Fortran)

10. | (read a scan) This code describes how to display the following data on
L2_scantime.c (C) a screen. This is applicable for a L2 product.
1L.2_scantime.f (Fortarn) Scan Time Table
(read a number of scans)

L.2_scantime_line.c (C)
L2 scantime_line.f
(Fortarn)

11. | L3.c (O This code describes how to display the following data on

L3.f (Fortran) a screen. This is applicable for a L3 product.

5-4

Table 5-1 Sample program list

No. | Program file name Explanation
Mean for Brightness Temperature(6GHz-89GHz)
Mean for Geophysical Data
12. | samplel.c (C) This code describes how to set meta data and each data
samplel.f (Fortran) set in structures. This is applicable for a L1B product.
More detail is in Section 3.2.3 and 3.3.3.
13. | sample2.c (C) This code describes how to set meta data and each data
sample2.f (Fortran) set in structures This is applicable for a L2 product.
14. | sample3.c (C) This code describes how to set meta data and each data
sampled.f (Fortran) set in structures. This is applicable for a .3 product.
Table 5-2 Sample data list
No. | Data file name Explanation
1. P1AME030201006MA_P01B0000000.00.sample | AMSR-E L1B product
2. P1AME030609207A_P2WV0Tak071.00.sample | AMSR-E L2 product
3. P1AME030609A_P3WV0Tak071E0.00.sample AMSR-E L3 product

55

	1 HDF library and ADIT
	1.1 What is HDF?
	1.2 What is ADIT?

	2 Installation of HDF library and ADIT
	2.1 Installation of HDF library
	2.1.1 Installing HDF library from compiled binary
	COPYING

	2.1.2 Installation of HDF library from source code

	2.2 Installation of ADIT
	2.3 Setting environment

	3 Programming with ADIT
	3.1 Program description
	3.2 C Programming
	3.2.1 Example of C program
	3.2.2 How to compile
	3.2.3 Sample program code for C

	3.3 Fortran programming (SunOS version, SGI version)
	3.3.1 Example of Fortran program
	3.3.2 How to compile
	3.3.3 Sample program code for Fortran

	3.4 Fortran programming(Linux version)
	3.4.1 Example of Fortran program
	3.4.2 How to compile
	3.4.3 Sample program code for Fortran

	4 APPENDIX
	4.1 Routines defined in ADIT
	L1B
	L3

	4.2 User routine interface in ADIT
	4.3 Structure definition in ADIT
	4.3.1 L1B, L2 common structure
	4.3.2 AMSRL1B_SWATH (for L1B)
	4.3.3 SUN_EARTH (for L1B)
	Ocean/Land flag

	4.3.4 STATUS_L1B (for L1B)
	Description

	4.3.5 CAL (for L1B)
	Description
	Description
	Description

	4.3.6 NAVI (for L1B)
	4.3.7 AMSRL2_SWATH (for L2)
	4.3.8 STATUS_L2 (for L2)
	4.3.9 L3 Science data

	4.4 Metadata
	4.4.1 L1B Metadata
	4.4.2 L2 Metadata
	4.4.3 L3 Metadata

	5 Sample Program List

