Terrestrial Hydrology : Soil Moisture and Snow
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Terrestrial Hydrology : Its Important Role in the Climate System and its Effects on Human Activities
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Fig. 6.1.1 Hydrological circulation
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Hydrologic processes on land, and water
circulation among atmosphere, land, and ocean are
key features of the Earth’s climate. Due to variations
of water storage as snow and soil moisture, local
and regional variations in the water cycle correlate
with different areas and seasons. Even when we
address a more localized water-related event, we
must consider its tele-connectivity with other areas
or regions under the global water cycle variation.
Enhanced prediction of variations in the global
water cycle based on improved understanding of
hydrological processes on land and sustained
monitoring capability, greatly mitigate water-related
damage and contribute to sustainable human
development. AMSR and AMSR-E provide timely,
long-term, quality information on land hydrology.
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Role of Soil Moisture and Snow
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Fig. 6.2.1 Water balance at the soil surface

6.2.2 HIFRE DI
Fig. 6.2.2 Heat balance at the soil surface
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(a) Interannual Variation of Rainfall in Thailamd and SOI
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Fig. 6.2.3 (a) Effect of El Nifio on the summer rainfall in Thailand and (b) negative correlation between snow
cover area in the Eurasian continent and the Indian summer monsoon rainfall

Soil moisture is one element of water balance (Fig. 6.2.1) and plays an important role in
evapotranspiration. Latent heat depends on the energy balance between soil moisture and
atmospheric water vapor content as well as surface wind speed. As change of latent heat yields to
the change in partition of the energy balance (Fig. 6.2.2), it influences the hydrological cycle and
climatic system. We must, therefore, observe soil moisture in time and space.

Snow plays an important role in climate and its variability through its high reflectance and soil
moisture supply after snowmelt. It also affects human activities through snow disasters and as a
function of water resources storage. Yasunari (personal communication) suggests a negative
correlation between the snow cover area in the Eurasian continent and the Indian summer monsoon
rainfall, as depicted in Fig. 6.2.3b. It is comparable to El Nifio in its effect on the summer rainfall in
Thailand (Fig. 6.2.3a), as pointed out by Oki (personal communication).
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Coordination of In-Situ and Satellite Observations of Soil Moisture
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Fig. 6.3.1 Monitoring system of soil moisture using the TDR method Fig. 6.3.2 Soil moisture observations by AWS and ASSH Fig. 6.3.3 Ground-based microwave radiometer experiments in lowa
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Time domain reflectometry (TDR) is well known as the best method to measure soil water content
in the field. Fig. 6.3.1 illustrates a monitoring system for soil moisture measurement by TDR sensors
with two parallel wires. In practice, several TDR probes are inserted horizontally into the vertical soil
profile of a trench in the field. Ground-based long-term monitoring by Automatic Weather Stations
(AWSs) and Automatic Stations for Soil Hydrology (ASSHs) including the TDR soil moisture
measurement system is continuing successfully in Mongolia. Fig. 6.3.2 presents the conditions of
AWS and ASSH in the study area.

Ground-based microwave radiometer experiments in lowa

From June to July 2002, University of Tokyo (UT) and JAXA introduced a ground-based microwave
radiometer in the intensive validation experiment for soil moisture in lowa, the SMEXO02 organized by
NASA and USDA (Fig. 6.3.3). UT and JAXA measured bare soil and land surfaces covered with corn
and soybeans at different stages of growth. Using the resulting data, we modeled the effects of
vegetation and developed a dual-frequency and dual-polarization algorithm for soil moisture and

vegetation water content.
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Fig. 6.3.4 Study area for ADEOS-II and Aqua validation experiment
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Fig. 6.3.5 Time change of the daily mean areal soil moisture

Study area for the ADEOS-II / Aqua validation experiment

To obtain ground-based data for ADEOS-I and Aqua algorithm validation of soil moisture
measurement and physical parameters, a study area of 160km by 120km was established in the
Mongolian plateau between Mandalgobi and Choyr (Fig. 6.3.4). The soil surface in the southern part
is mostly covered with sparse pasture and that in the northern and eastern part is covered with dense
pasture with sporadic shrubs. Five AWSs and twelve ASSHs were installed in this study area.
Monitoring fundamental elements of meteorology and hydrology was initiated using AWS from 2000
and ASSH from 2001.

Areal soil moisture

Fig. 6.3.5 presents the time change of the areal soil moisture calculated arithmetically using all the
ASSH data in the experimental field from June 2001 to May 2004. The wide range of differences
(1.8% to 19.6%) in the areal soil moisture implies it will be useful in validating the satellite soil
moisture algorithm as shown in the figure. Many spikes can be seen in spring and summer due to
rainfall. From October to February, the soil is apparently drier because of freezing conditions.
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Fig. 6.4.1 Soil moisture distribution in Mongolia by AMSR-E (top, July; middle, August; bottom, September)
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Soil Moisture Distribution in Mongolia and the Tibetan Plateau Derived from AMSR-E
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Fig. 6.4.2 Soil moisture distribution in the Tibetan Plateau by AMSR-E

UT and JAXA derived the first ten-day soil moisture average in July (top panel, Fig. 6.4.1), August
(middle) and September (bottom) in Mongolia based on the AMSR-E data. They observed an
expansion of the dry area in the west.

By applying the dual-frequency, dual-polarization algorithm to the AMSR-E data, UT and JAXA
produced a ten-day average soil moisture distribution map (Fig. 6.4.2) of the Tibetan Plateau for the
end of September 2003. They identified a very clear dry-wet contrast between the northwest and
southeast parts of the Tibetan Plateau. There are wet bands on the south and dry bands on the north
slopes of the Himalayas.
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Coordination of In-Situ and Satellite Observations of Snow
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Fig. 6.5.2 Ground-based microwave radiometer observation in the Rocky Mountains
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Microwave remote sensing of snow from space should be developed based on radiative
transfer characteristics of the snow pack, and validated under various land cover conditions. A
ground-based microwave radiometer (Fig. 6.5.2) having observational frequencies consistent
with AMSR/AMSR-E was introduced in the Cold Land Processes Experiment (CLPX)
conducted in the Rocky Mountains in 2003 to facilitate understanding and modeling microwave
radiative transfer processes in snowpack. In 2001, seven snow depth sensors were installed in
Siberia under different vegetation covers (Fig. 6.5.1) and are providing valuable data sets for
improving and validating AMSR and AMSR-E snow products.
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Snow Distribution in Siberia Derived from AMSR-E
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To apply an algorithm for snow to cold regions
worldwide, we must improve the applicability of the
basic radiative transfer embedded in the algorithm to
wide ranges of snow depth, physical characteristics,
and soil conditions below the snow. The algorithm
must also maximize use of available data from
satellites and other data sources. UT and JAXA
developed an algorithm by introducing the four-
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media radiative transfer model using the four
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Fig. 6.6.1 Monthly distribution of snow of Siberia during January derived products present the interannual variation of
snow distribution in Siberia from 2003 to 2005 (Fig.

6.6.1).




