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Linear combination of TOA reflectance



Principle of the Method

-The top-of-atmosphere reflectance in selected spectral bands is 
combined linearly, after correction for molecular scattering and sun 
glint contributions.

-The coefficients of the linear combination minimize the perturbing 
effects, due to scattering and absorption by aerosols, and reflection 
by the surface. These effects are decomposed into a polynomial or 
principal components.

-The spectral bands are selected so that the linear combination is 
sensitive to chlorophyll-a concentration.



Minimization of Perturbing Effects

-TOA reflectance

RTOA(λ) = Rm(λ) + Ra(λ) + Rma(λ) + Tm(λ)Ta(λ)Rw(λ)

Rc(λ) = RTOA(λ) – Rm(λ)= Ra(λ) + Rma(λ) + Tm(λ)Ta(λ)Rw(λ)

= R’(λ) + Tm(λ)Ta(λ)Rw(λ)

-Linearly combining the corrected reflectance Rc in spectral 
bands centered at λi yields the index

I = ∑i [aiRc(λi)] =  ∑i [ai R’(λi)] + ∑i [ai Tm(λi)Ta(λi)Rw(λi)]

-To eliminate most of the atmospheric influence on I, one has 
to find coefficients ai that fulfill

∑i [ai R’(λi)] = 0



-For this, R’(λi) is decomposed in a polynomial or principal 
components, i.e.,

R’(λi) ≈ ∑j [bjeji]

-In general, a satisfactory representation can be obtained with 
only a few eigenvectors, ej, since R’ is a smooth function of 
wavelength.

-Substituting R’ by its linear expression, we obtain 

∑i {[ai ∑j[bjeji]} = ∑j {[bj ∑i aieji]} = 0

-To satisfy this equation, it is sufficient to have, for each ej

∑i [aieji] = 0

-This system of linear equations is solved using p wavelengths, 
n = p-1 eigenvectors, and a1 = 1. 

-Note that the coefficients bj, which vary with geometry and 
geophysical conditions do not need to be known.



Figure 1. Application of the linear combination method to simulated 
GLI imagery. Perturbing effects are expressed as a polynomial.



Figure 2. Application of the linear combination method to global GLI 
data. (Courtesy of H. Murakami, JAXA.)



Figure 3. GLI Version 2 chlorophyll-a concentration product. 
(Courtesy of H.Murakami, JAXA.)



Figure 4. Application of the linear combination method to SeaWiFS imagery. 
The perturbing effects are decomposed into principal components.
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Retrieval of the Ocean Signal

-First, a set of spectral bands is selected in the red and near infrared, 
for which the water body can be considered black, except in one of the 
spectral bands.

-Second, other sets of spectral bands are selected, that progressively 
include shorter wavelengths. At each step, only marine reflectance in 
one spectral band is unknown and therefore estimated.



[λi , i = 1, 2, …,8] = [412, 443, 490, 510, 555, 670, 765, 865]

1: Tm(λ6)Ta(λ6)Rw(λ6) ≈ ∑i [aiRc(λi)] , i = 6, 7, 8

2: Tm(λ5)Ta(λ5)Rw(λ5) ≈ - a6Tm(λ6)Ta(λ6)Rw(λ6)
+ ∑i [aiRc(λi)] , i = 5, 6, 7

.

.

.
6: Tm(λ1)Ta(λ1)Rw(λ) ≈ - a2Tm(λ2 )Ta(λ2)Rw(λ2) - a3Tm(λ3 )Ta(λ3)Rw(λ3)

+ ∑i [aiRc(λi)] , i = 1, 2, 3



Figure 5. Residual perturbing effects of the atmosphere and surface, 
i.e., ∑i [ai R’(λi)], as a function  of aerosol optical thickness at 555 nm. 
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Figure 6. Comparison of estimated and actual ocean signal, i.e.,  Tm(λ)Ta(λ)Rw(λ), 
when the optical thickness at 550 nm is between 0.1 and 0.2.
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Figure 7. Performance statistics for the retrieval of Tm(λ)Ta(λ)Rw(λ). 
Bias (solid circles) and standard deviation (open circles) are given as 
a function of aerosol optical thickness at 550 nm.



Conclusions

-The perturbing influence of the atmosphere and surface is minimized 
adequately for each set of wavelengths, except when aerosol loading is 
large. The residual effects exhibit a bias increasing with aerosol 
optical thickness. The bias can be reduced by taking into account the
last eigenvector of the decomposition into principal components, but 
just globally.

-Errors in the estimated ocean signal, i.e., Tm(λ)Ta(λ)Rw(λ), increase with 
decreasing wavelength (residual effects at longer wavelengths 
propagate) and with increasing aerosol optical thickness. They become 
unacceptable when the optical thickness at 550 nm is above 0.3.

-Performance can be improved by optimizing the sets of selected 
wavelengths, or by using a knowledge of the aerosol optical thickness, 
which can be estimated from the satellite data.



Fields of Nonlinear Regression Models



Problem

To estimate marine reflectance ρw from top-of-atmosphere 
reflectance ρTOA and angular variables t without knowing the 
other variables x that influence the radiative transfer in the 
ocean-atmosphere system



Methodology

-Explanatory variables (ρTOA) are considered separately from the 
conditioning variables (t). 

-An inverse model is attached to each t, and the attachment is 
continuous, i.e., the solution is represented by a continuum of 
parameterized statistical models (a field of non-linear regression 
models) indexed by t:

ρw = ζt(ρTOA) + ε

where ε is the residual of the modeling.



Methodology (cont.)

Ridge functions, selected for their approximation properties, 
especially density, are used to define the statistical models 
explaining ρw from ρTOA and t:

ζtj(ρTOA) = Σi = 1, …, n cijh(ai. ρTOA + bi)

ρwj = ζtj(ρTOA) + εj

where ai(t), bi(t), and cij(t) are the model parameters.



Simulated Data Sets

62,000 joint samples of ρTOA and ρw split in two data sets, D0
e and 

D0
v, for construction and validation. Noisy versions D1

e, D1
v, D2

e, and 
D2

v generated, by adding 1 and 2% of noise to ρTOA. The noise is 
defined by:

ρTOAj’ = ρTOAj + νcρTOAj + νuc
jρTOAj

where νc and νuc
j are random variables uniformly distributed on the 

interval [-ν/200, ν/200], where ν is the total amount of noise in 
percent.



Function Field Construction

-The free parameters of the field, i.e., the maps ai(t), bi(t), and
cij(t), are estimated by multi-linear interpolation on a regular grid 
covering the range of t.

-The adjustment is considered in the least-square sense, and 
minimization of the mean squared error is carried out using a 
stochastic gradient descent algorithm. 



Function Field Construction (cont.)

-A sufficient number of n = 15 basis functions was selected via 
simulations, and three fields of this kind, ζ0, ζ1, and ζ2 were 
constructed for 0, 1, and 2% of noise. 

-Since the components ζtj take their values in the same vector space 
(the vector space spanned by the linear combinations of ridge 
functions), the approach is not equivalent to separate retrievals on 
a component-by-component basis.



Table 1. Root Mean Squared error (RMS) and Root Mean Squared Relative error 
(RMSR) for the models ζ0 and ζ1 evaluated on the construction and validation data 
sets (D0

e and D0
v) and on 1% noisy versions of them (D1

e and D1
v).

Theoretical Results for GLI



Figure 8. Estimated versus expected marine reflectance 
for model ζ1 adjusted on 1% noisy data.



Figure 9. Conditional quantiles (of order 0.1, 0.25, 0.5, 0.75, and 0.9) of the 
residual ρw error distributions as a function of aerosol optical thickness at 
550nm for model ζ1 applied to 1% noisy data.



Figure 10. Conditional quantiles (of order 0.1, 0.25, 0.5, 0.75, and 0.9) of the 
residual ρw error distributions as a function of scatering angle for model ζ1

applied to 1% noisy data.



Figure 11. ρw(443)/ρw(545) as a function of [Chl-a] for theoretical ρw
and for ρw estimated by ζ1 from 1% noisy data.



Application to SeaWiFS Imagery

-Function field methodology tested on SeaWiFS imagery acquired on 
day 323 of year 2002 over Southern California. 

-ζt
2 gives large differences in ρw compared with SeaDAS values, 

resulting in 78% difference in chlorophyll-a concentration on average.

-Differences may be explained by large noise level on ρTOA (e.g., 14% 
at 412 nm), due to RT modeling uncertainties.

-Noise distribution estimated on 2,000 randomly selected pixels of 
the imagery, and introduced during the execution of the stochastic 
fitting algorithm, yielding function field ζt*.



Figure 12. Marine reflectance ρw estimated by ζ* for SeaWiFS 
imagery acquired on day 323 of year 2002 over Southern California.



Figure 13. Marine reflectance ρw estimated by SeaDAS for SeaWiFS 
imagery acquired on day 323 of year 2002 over Southern California.



Figure 14. Histograms of marine reflectance ρw retrieved by SeaDAS and ζ*.



Figure 15. Marine reflectance spectra retrieved by SeaDAS and ζ*.



Figure 16. [Chl-a] retrieved by SeaDAS and ζ*, fractional difference, and 
histograms for SeaWiFS imagery acquired on day 323 of year 2002 over 
Southern California. Average difference is 19.6%.



Conclusions

Fields of non-linear regression models emerge as solutions to a 
continuum of similar statistical inverse problems. They match well 
the characteristics of the remote sensing problem, allowing 
separation of the explanatory variables (ρTOA) from the conditioning 
variables (t).

The inversion is robust, with good generalization, and 
computationally efficient. The retrievals of ρw are accurate, with an 
error uniform over the entire range of ρw values. Situations of 
absorbing aerosols are handled well.

For noise levels up to a few percent, a general noise scheme may be 
appropriate, but for large noise levels, the noise distribution needs 
to be estimated. A plug-in approach may be reasonable. 


