Improvement of the GLI ocean color algorithm and monitoring of the trend in the east Asian aerosol characteristics

H. Fukushima¹, M. Toratani¹, L.P. Li¹,², and H. Kobayashi³,

in collaboration with

R. Frouin⁴, H. Murakami⁵, and K. Hosoda⁵

¹Tokai University, ²Ocean University of China,
³Yamanashi University, ⁴Scripps Institution of Oceanogr.
⁵Japan Aerospace Exploration Agency

at GLI Workshop, Tsukuba, Japan
January 30, 2007
Works done so far...

- worked on the GLI standard ocean color atmospheric correction
 - Algorithm implementation/tuning
 - Iterative procedure for “turbid case 2 waters”
 - Absorptive aerosol correction: empirical algorithm for “V2 GLI” processing
 - Refinement of QC flags incl. cloud screening
 - Sun-glitter masking/correction
 - Validation
 - Level-3 product evaluation
Works this year

- **FY’06: Further efforts towards “future”**
 - Absorptive aerosol correction
 - Sun-glitter correction/evaluation

- **FY’06: Application studies**
 - Atmospheric correction over coastal waters - use of SWIR bands, and “red tide” observation
 - “Trend in East Asian aerosols”
 A trial for “climate record”
GLI atmospheric correction

\[\rho_T(\lambda) = \rho_M(\lambda) + \rho_A(\lambda) + \rho_{MA}(\lambda) + T(\lambda)\rho_G(\lambda) + t(\lambda)\rho_{WC}(\lambda) + t(\lambda)\rho_W(\lambda) \]

\(\rho_T \): Satellite observed reflectance
\(\rho_M \): Reflectance due to gas molecules
\(\rho_A \): Reflectance due to aerosol particles
\(\rho_{MA} \): Reflectance due to molecule-aerosol interact.
\(\rho_G \): Reflectance due to sunglint
\(\rho_{WC} \): Reflectance due to whitcap
\(\rho_W \): Reflectance of water body (our target!)
\(t \): Diffuse transmittance between sea-surface and satellite
\(T \): Direct transmittance between sea-surface and satellite

Reflectance in atmospheric correction

\[\rho \equiv \frac{\pi \cdot L}{F_0 \cdot \cos \theta_0} \]
Features and difficulties

- **Algorithm fairly established for “case 1” ocean waters**
- **Difficulties**
 - Over “turbid case 2” coastal waters
 - Needs to work with “in-water model”
 - Under “absorptive aerosol”
 - Needs new aerosol models & schemes
- **Current V2 algorithm features…**
 - *In-water optical models* to estimate water reflectance $\rho_W(\lambda)$
 - *Neural network* to predict chl-a, SS, and CDOM concentrations
 - *Use of 380 nm band* to estimate the aerosol “absorption”

Important to SGLI
Empirical absorptive aerosol correction for V2 GLI data processing

- Normalized water-leaving radiance at 412nm band
Empirical absorptive aerosol correction for V2 GLI data processing

- Chlorophyll a concentration estimate

Before correction

After correction

Radiative Transfer Simulation on Absorptive Aerosol

- Effect is larger in short wave visible
- Magnitude dependent
 - on Mixture ratio of absorptive aerosol
 - on Path length
 - on Scan geometry
 - on Vertical distribution

[FY’06] RTS ongoing with model-predicted aerosol vertical profiles
GLI Level 2 Sunglint Correction

- **SeaWinds-derived wind speed** used for correction (25 km spatial resolution)
- **Based on Cox and Munk (1954) isotropic model** for wave slope probability distribution
Comparison of Chlorophyll-a imagery: version 1 and 2 sunglitter masking/correction

Ver.1 algorithm with JMA-OA

Ver.2 algorithm with SeaWinds
Sun-glitter evaluation:

ongoing refinement in FY’06

- Paper submitted on “sun-glitter reflectance evaluation” for wind-direction independent model
 - Based on the analysis of 750 GLI L1B FR scenes with SeaWinds/SeaWiFS L3 data set

- [FY’06] Re-analysis of the GLI L2AOA and SeaWinds data set ongoing for wind-direction dependent model.

- Plan to complete the work to publish in FY’07
Evaluation of AC over coastal waters

- **Study area**
 - **Bangpakong river estuary** - “Turbid case 2”
 - The suspended matter is dominant.
 - To evaluate AC with SWIR bands?
 - **Yellow Sea**
 - **Ise Bay**
 - Red tide
 - To see possibility of identifying “dominant species”
MODIS specs

<table>
<thead>
<tr>
<th>Primary Use</th>
<th>Band</th>
<th>Bandwidth</th>
<th>Spectral Radiance</th>
<th>Required SNR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land/Cloud/Aerosols Boundaries</td>
<td>1</td>
<td>620 - 670</td>
<td>21.8</td>
<td>128</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Properties</td>
<td>2</td>
<td>841 - 876</td>
<td>24.7</td>
<td>201</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>3</td>
<td>459 - 479</td>
<td>35.3</td>
<td>243</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>4</td>
<td>545 - 565</td>
<td>29</td>
<td>228</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>5</td>
<td>1230 - 1250</td>
<td>5.4</td>
<td>74</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>6</td>
<td>1628 - 1652</td>
<td>7.3</td>
<td>275</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>7</td>
<td>2105 - 2155</td>
<td>1</td>
<td>110</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>8</td>
<td>405 - 420</td>
<td>44.9</td>
<td>880</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>9</td>
<td>438 - 448</td>
<td>41.9</td>
<td>838</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>10</td>
<td>483 - 493</td>
<td>32.1</td>
<td>802</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>11</td>
<td>526 - 536</td>
<td>27.9</td>
<td>754</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>12</td>
<td>546 - 556</td>
<td>21</td>
<td>750</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>13</td>
<td>662 - 672</td>
<td>9.5</td>
<td>910</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>14</td>
<td>673 - 683</td>
<td>8.7</td>
<td>1087</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>15</td>
<td>743 - 753</td>
<td>10.2</td>
<td>586</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>16</td>
<td>862 - 877</td>
<td>6.2</td>
<td>516</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>17</td>
<td>890 - 920</td>
<td>10</td>
<td>167</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>18</td>
<td>931 - 941</td>
<td>3.6</td>
<td>57</td>
</tr>
<tr>
<td>Land/Cloud/Aerosols Ocean Color/Phytoplankton/Biogeochemistry</td>
<td>19</td>
<td>915 - 965</td>
<td>15</td>
<td>250</td>
</tr>
</tbody>
</table>
In situ observation

- May 23-27 in 2005
- Measured parameters
 - Chlorophyll-a concentration
 - Total suspended matter concentration
 - Water-leaving radiance by Radiometer (TriOS optical sensors)
Total Suspended matter concentration (g/m3)

May 23-27 in 2005
Ship-observed total suspended solid (g/m³)

From MODIS, in May 26 2005.

Chl could not be estimated.
Comparison water-leaving radiance

CHL
5.008 mg/m³
TSS
36 g/m³
Comparison water-leaving radiance

CHL
5.226mg/m³

TSS
3.28g/m³
AC with SWIR bands

- AC with SWIR band combination useful over “highly turbid waters” if high S/N achieved
Concluding Remarks for AC part

• Towards further improvement on ocean color AC [FY’06 activities]
 1. Absorptive aerosol correction
 • RT simulations ongoing…
 2. Sun glitter evaluation model
 • Reanalysis on the global GLI L2AOA data with SeaWinds data
 3. Atmospheric correction over “coastal waters”
 • Confirmed usefulness of SWIR bands over “Turbid Case II” waters
 • Showed possibility of identifying “dominant Akashio species”

• Future plans
 – Fix the “absorptive aerosol correction” to evaluate the performance
 – Discuss/collaborate on “AC for coastal waters”

• Suggestion/proposal
 – Need “precision” in-water optical model to predict $\rho_w(\lambda)$ spectrum possibly using “Monte Carlo”?
Increasing trends of sub-micron aerosol particles over East Asian waters observed in 1998-2004 by Sea Wide Field-of View Sensor (SeaWiFS)

Hajime Fukushima*a, Li-Ping Li*a,b, Keisuke Takeno*a

*a School of High-tech., Tokai University, Japan
b Department of Physics, Ocean University of China, China

January 30, 2007
Motivation of the Study

1. Observation of aerosol characteristics and its spatial variability is important
 - in terms of evaluating its effect on climate change
 - Even more important in East Asia

2. Can satellite observation measure the inter-annual variability in characteristics of aerosol?
 Candidate satellite sensors:
 - NOAA/AVHRR
 - TERRA/MODIS and AQUA/MODIS

3. SeaWiFS data set may provide a view for a potential change in aerosol characteristics
 - Over 1998-2004
 - With well-calibrated sensor
Analysis of SeaWiFS East Asian data set

- Over adjacent seas of Japan (22.4-51.9° N, 116.6-146.5° E)
- SeaDAS (ver.4.8) used to produce
 - Aerosol Optical Thickness (AOT) \(\tau_A(490\text{nm}) \)
 - Angstrom exponent \(\alpha \)
 - derived from 765 and 865 nm band data
- Cloud mask: Local variance in \(\rho_A(865) \) in add. to simple threshold \((\tau_A(490) = 2.5) \)
- Daily composites averaged monthly
Study sub-areas

1. Okhotsk
2. Sea of Japan
3. East China Sea
4. South of Japan
5. East of Japan
Variabilities in monthly mean $\tau_A (490\text{nm})$ and $\alpha (765\text{nm}, 865\text{nm})$ over 1998-2004 period
Results so far…

- **Trend over 98-04 period**
 - No significant increase in AOT
 - **Angstrom exponent increased** by 0.1 in most of the East Asian waters over the 7 years
 - Access as
 - 4-5% increase in sub-micron fraction (SMF)
 - (by conversion formula in Anderson et al., 2005)

 \[
 SMF = -0.0512\alpha^2 + 0.5089\alpha + 0.02
 \]
 - Most likely due to increasing **anthropogenic activities**?
Discussion

• Calibration reliable?
 – Lunar calibration maintained in addition to solar and vicarious calibration

• Can compare with ground observation?

• How does it compare with MODIS?
SeaWiFS vs. MODIS-derived AOT (single scene)
SeaWiFS vs. MODIS-derived Ang. Exp. (v.1)

SeaWiFS $\alpha_{\tau}(490, 865\text{nm})$
SeaWiFS vs. MODIS-derived Ang. Exp. (v.2)

\[\alpha_\rho < \frac{\rho_A(765)}{\rho_A(865)} \]
CONCLUSION for “aerosol” part

• The time series analysis shows the possibility of tracking a “trend” in aerosol characteristics

• Lessons:
 – **Calibration** of the satellite sensor is essential/critical
 – Aerosol model determination scheme in ocean color AC should be re-evaluated

• Future works
 – Collaboration: comparison with model prediction/ground measurements
 – Absorptive aerosol distribution mapping planned
 • Based on some “in-water model”