Analysis of aerosol, cloud, and water vapor using GLI NUV, O₂ absorption, and IR channels

Makoto KUJI

Nara Women's University, Japan

GLI Workshop in Tsukuba, Jan. 30, 2007

Contents

Algorithm developments:

- 1. Retrieval of cloud heights
 - using the following GLI Channels: VIS, Oxygen A-band, NIR, TIR;
- 2. Retrieval of aerosol amount
 - using GLI NUV channels;
- 3. Retrieval of water vapor amount
 - using GLI NIR channels;

Global analysis of cloud geometrical properties using ADEOS-II / GLI data for radiation budget studies

Makoto Kuji

Nara Women's University, Japan

Teruyuki Nakajima

CCSR, University of Tokyo, Japan

Objective

- Cloud has an influence on the Earth radiation budget
 - For Shortwave and/or Longwave flux at TOA and/or surface;
 - Depending upon optical, microphysical and geometrical properties;
 - Optical thickness, particle size, and layer height;
- There still exists some uncertainty in the estimation of surface radiation budget among observations and/or simulations;
- Retrieval of cloud geometrical properties (ie, cloud layer height)
 - Reducing uncertainty of downward longwave flux;
 - Improvement of surface radiation budget;
 - Air-/space-borne imager-type remote sensing data are useful for extended cloud systems;

Approach

- ADEOS-II / GLI
 - A nadir looking imager with 1km footprint;
- Four-channel algorithm: Visible, Oxygen A-band, NIR, and TIR;
- Retrieval of cloud properties:

 τ_{c} , \mathbf{r}_{e} , \mathbf{z}_{t} , and $\Delta \mathbf{z}$;

 Application to Global observation dataset;

http://sharaku.eorc.jaxa.jp/ http://www.eoc.jaxa.jp/

GLI global data (678nm; Mar. 20, 2003)

180°W 120°W 60°W 0° 60°E 120°E 180°E

* Segment dataset: GAC type dataset divided every 60° in longitude

Cloud top height (Mar. 20, 2003)

* Future improvement: cloud type flag (water or ice) for cirrus cloud contamination

Cloud geometrical thickness (Mar. 20, 2003)

Cloud bottom height (Mar. 20, 2003)

* A by-product with top height and geometrical thickness

Summary (cloud)

- A four-channel algorithm was developed and applied to the ADEOS-II / GLI global dataset to retrieve cloud geometrical properties as well as optical and microphysical ones.
- An initial global analysis and preliminary results reveal
 - Algorithm works as a whole, but more elaborate analyses are necessary
 - > Surface condition: albedo, land/ocean, temerature, and pressure;
 - Atmospheric profile: temperature, relative humidity, and pressure;
 - Cirrus screening: water vapor absorbing band or thermal IR bands;
 - > Sun glint screening: scan geometry;
- Future works
 - Validation studies with active sensors;
 - Further global analyses for radiation budget and cloud physics studies;

Characterization of sulfate haze over East Asia retrieved with satellite and ground-based remote sensing data

*M. Kuji, M. Hibino, Y. Kondo, S. Hayashida

Nara Women's University, Japan

M. Shiobara, M. Yabuki

National Institute of Polar Research, Japan

K. Hara

Fukuoka University, Japan

H. Kobayashi

Yamanashi University, Japan

T. Hayasaka, S. Satake

Research Institute for Humanity and Nature, Japan

Objective

- Air pollution accompanying with recent rapid economic growth in East and South Asia has a potential to influence our environment.
- It is important to investigate aerosol type and distribution with remote sensors and ground based measurements.
- In this study, we characterize a haze event around Japan in autumn of 2003 with observations and chemical transport model simulations.
 海の水、ぶき 工場や自動車からの操気 登座風 火山噴火 気気

エアロゾルの主な発生要因

ADEOS-||/GLI

Global Imager (GLI)

Operation:

December 2002 to October 2003 Channels: 36 from 380nm (NUV) to 12 µm (TIR) Recursive period: 4 days

Spatial resolution: 1km (IFOV) and 1600km (Swath)

Data to be analyzed Date: September 16, 2003 Band: Near Ultraviolet (NUV); 380nm (ch1) and 400nm (ch2) Scene: around Japan

http://sharaku.eorc.jaxa.jp/ http://www.eoc.jaxa.jp/より

GLI image (Sept. 16, 2003)

NIR (866nm)

NUV (400nm)

+ Shipborne measurements with R/V Shirase

Aerosol retrieval with NUV observation

Summary (aerosol)

- GLI NUV (380 nm) enables us to retrieve Asian Haze properties in 1-km resolution;
 - Comparison to the *in situ* observations, such as surface sampling as well as lidar and skyradiometer, indicated the retrieved optical thickness was reasonable;
- Combined analyses of surface, satellite, and model simulation are useful (necessary) to characterize aerosol properties
 - Chemical type, amount, microphysics, distribution, transportation (source and sink), and so on;
- Aerosol layer height is one of the greatest error sources for absorbing aerosols;
 - LIDAR observation will help us;
 - O₂ A-band (763nm) will be a possible candidate in GLI analysis;

Retrieval of precipitable water using ADEOS-II / GLI Near Infrared data

Makoto Kuji*

Nara Women's University, Japan

Nobuyuki Kikuchi

JAXA / EORC, Japan

Akihiro Uchiyama

Meteorological Research Institute, Japan

Objectives

- Water vapor: Integrated amount (precipitable water);
 - A key parameter in an aerosol-cloud interaction as well as radiation budget study;
- Utility: Atmospheric product (clear sky) or correction;
 - Over land, in particular (AMSR only over ocean);
- Applications to ADEOS-II / GLI;
 - The MODIS algorithm (King et al. 1992; Kaufman and Gao 1992);
- Advantage of GLI analysis:
 - on a pixel-by-pixel (about 1 km²) basis;
 - Fully synchronized data set with other channels;
 - Cloud and ecosystem flags from GLI processing flow;
 - Atmospheric correction for surface products, e.g., vegetation, snow/ice, etc.;

Approach

- Radiance Ratio Method:
 - Near Infrared (ADEOS-II / GLI Application);
 - Water vapor absorbing band (1135 nm), and;
 - Non-absorbing band (1050 or 1240 nm);
 - Daytime Retrieval;
 - Under a clear sky condition;
 - Surface albedo: high or moderate (over land);
 - Aerosol loading: up to moderate (1.0 @ 500 nm);
- Analysis and Validation:
 - Implemented to EORC (ATSK6p);
 - GLI analysis: April and August, 2003 @ Global;
 - Comparison to radiosonde observations, and so on;
 - Re-evaluation of algorithm;

Physical background

Calibration (Bright Surface; Lambertian 50%)

Precipitable water with GLI (over Land; 2ch); Seasonal contrast

- Comparison between spring (April) and summer (August);
 - Good seasonal contrast;
- GLI precipitable water was corrected after the validation with radio sonde;
- Precipitable water over ocean is retrieved with AMSR;

(provided by courtesy of JAXA EORC)

Re-validation with radiosondes

- Good correlation between GLI and Radiosondes;
 - Even with a time lag by a few hours;
- A poster
 presentation by
 Dr. N. Kikuchi of
 JAXA EORC;

N. Kikuchi (2007)

Summary (water vapor)

- GLI NIR enables us to retrieve precipitable water over land in 1-km resolution under a clear-sky condition;
- Global analysis over land
 - Combined results with water vapor over ocean with AMSR;
 - Good seasonal variation;
- Re-evaluation of calibration curve
 - Improvement of water vapor amount estimation;
 - Re-analysis on a global basis in the future;

Final Summary

Table 1. The development status (self-evaluation)

	Algorithm	Global analysis	Validation (precision)	Paper preparation	Relevant Channel
Cloud heights	***	***	**	**	O ₂ A-band
Aerosol type over land	**	**	**	**	NUV
Water vapor amount	***	***	***	**	WV-NIR
Water vapor profile	**	*	*	*	WV-IR (#)

*** Almost done; ** Ongoing; * Future works;

A possible retrieval algorithm for water vapor profile with GLI water vapor IR bands;