

Турhoon 14 (Maemi), Sep./11/2003 GLI 250m 2.2µm / <mark>1.6µm</mark> / 0.46µm

Estimation of cloud vertical inhomogeneity by multi-wavelength technique

Takashi Y. Nakajima (Tokai University)

Keiji Imaoka (JAXA/EORC), Hirohiko Masunaga (Nagoya University), Teruyuki Nakajima (Univ. Tokyo), Kentaroh Suzuki (Univ. Tokyo), and Yoshitaka Muraji (ESCoT)

Contents

- Motivations
- Cloud observations by Passive Sensors

 GLI global scale analysis of clouds. (ATSK3R)
 GLI-AMSR combined analyses
 GLI SWIR Sounding Technique
- Application for the cloud droplet growing process studies.
 Observation VS Model, optical thickness (τ_c) and effective radius (r_e),
- Summary

Revealing.

cloud-aerosol interactions Horizontal and Vertica

Observing.

distributions of **cloud properties**

Better understanding the role of aerosols and clouds for
Climate change.

Modeling..

Simulates **them** by Cloud Model

Motivation

Cloud model *v.s.* Remote sensing

Validating.

Cloud observations by Passive Sensors

- Horizontal Inhomogeneity for wide area
 - Column quantity of cloud optical and microphysical properties using passive imagers.
 (AVHRR, ADEOS-II/GLI, Terra/MODIS, etc..)
 Han et al. 1994, N and N 1995, Kawamoto et al. 2000 and others.
- Vertical Inhomogeneity for wide area
 - Combined use of visible-infrared imager and microwave scanners (VIRS-TMI on TRMM, GLI-AMSR on ADEOS-II) Masunaga et al. (2002), Today's talk.
 - SWIR Sounding Technique (MODIS, GLI, etc..)
 Suggested by Nakajima and King (1990), Today's talk.

Estimations of the *VERTICAL* inhomogeneity of wide- area cloud properties using **passive** sensors.

Flow Chart

New aspects in GLI/AMSR combination

Algorithm and concept from Masunaga et al. (JGR 2002)

	Passed study	Present study
	(Masunaga et al.)	
Satellite	TRMM	ADEOS2
(Sensor)	(VIRS+TMI)	(GLI+AMSR)
I atitude Region	+- 35 degs	> +- 60 degs
	1- 55 ucgs.	~ 1- 00 ucgs
Sensor Swath	720km	1,600km
Nadir IFOV	2km	1km
Orbit	NO	YES (10:30 LT)
(Sun synchronous ?)	Diurnal Cycle	AM

Applications of satellite measured data for process studies of CLOUD DROPLET GROWING

I will show r_e - τ_c plots in the following viewgraphs

Summary

Horizontal and Vertical inhomogeneity of cloud properties.

- (H) Consistent with previous results such as AVHRR and MODIS.
- (H) Strong aerosol-cloud interaction appeared in Eastern Asia.
- (V) Combined analyses of GLI and AMSR are tentatively presented.
 Advantage : Wider latitude area than passed study by TRMM
- (V) SWIR sounding technique using 1.6, 2.2, 3.7 is presented.

 $r_e - \tau_c$ SCatter plots comparisons (Observation VS Model).

Typical scatter plots that present, pristine, polluted and mixture, were found.

Future works

Long term data analyses (AVHRR,GLI,MODIS...)

- To monitor the variability of cloud (and aerosol) coverage and properties more than decades-long period.
- TO give more sample data for model development studies.

More detailed investigations (by pixel by pixel analyses)

- To make the most practical understanding of cloud growing process.
- → Higher spatial and temporal resolution of cloud dataset. (ATSEG analysis -> L2A_OA analysis)

Comparison with, aerosol products, cloud radar data.

Contribute better forecasting of global climate change.

Thank you very much!

Conferences & Publications in 2006

•	Kikuchi et al. (JGR, 2006) cloud observation
•	Nakajima TY et al. (SPIE@GOA, 2006) cloud and model
•	Nakajima T et al. (SPIE@GOA, 2006) observation vs model
•	Suzuki et al. (SOLA, 2006) cloud bin-method
•	Nakajima TY. ("Tenki" by JMA, 2006) GSS simulator
•	Nakajima TY. (APMS@Kanazawa, 2006) vertical structure
•	Suzuki et al. (AMS@Wisconsin, 2006) cloud bin-method
•	Nakajima T. (AMS@Wisconsin, 2006) observation vs model
•	Nakajima TY. (AMS@Wisconsin, 2006)horizontal distribution
•	Nakajima TY. ("Parity" by Maruzen, 2007)showing GLI image